If
and \( AA^T = I \), then \( \frac{a}{b} + \frac{b}{a} = \):
Step 1: Solving for matrix \( A \). Given that \( 3A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix} \), we solve for \( A \): \[ A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}. \] Step 2: Use the condition \( AA^T = I \). We compute \( AA^T \) and set it equal to the identity matrix, which gives us the relationships between \( a \) and \( b \).
Step 3: Solving for \( a \) and \( b \). From the equations, we find that \( a = -5 \) and \( b = 5 \).
Step 4: Compute \( \frac{a}{b} + \frac{b}{a} \). \[ \frac{a}{b} + \frac{b}{a} = \frac{-5}{5} + \frac{5}{-5} = -1 + (-1) = -2. \]
If two vectors \( \mathbf{a} \) and \( \mathbf{b} \) satisfy the equation:
\[ \frac{|\mathbf{a} + \mathbf{b}| + |\mathbf{a} - \mathbf{b}|}{|\mathbf{a} + \mathbf{b}| - |\mathbf{a} - \mathbf{b}|} = \sqrt{2} + 1, \]
then the value of
\[ \frac{|\mathbf{a} + \mathbf{b}|}{|\mathbf{a} - \mathbf{b}|} \]
is equal to: