We are given the following two conditions: \[ \sum (x_i + 2)^2 = 28n \] \[ \sum (x_i - 2)^2 = 12n \] Step 1: Expanding the Given Expressions Expanding the first condition: \[ \sum (x_i + 2)^2 = \sum x_i^2 + 4\sum x_i + 4n \] From the given condition, \[ \sum x_i^2 + 4\sum x_i + 4n = 28n \] Expanding the second condition: \[ \sum (x_i - 2)^2 = \sum x_i^2 - 4\sum x_i + 4n \] From the given condition, \[ \sum x_i^2 - 4\sum x_i + 4n = 12n \] Step 2: Adding the Two Equations \[ \sum x_i^2 + 4\sum x_i + 4n + \sum x_i^2 - 4\sum x_i + 4n = 28n + 12n \] Combining like terms: \[ 2\sum x_i^2 + 8n = 40n \] \[ \sum x_i^2 = 16n \] Step 3: Subtracting the Two Equations \[ \sum x_i^2 + 4\sum x_i + 4n - (\sum x_i^2 - 4\sum x_i + 4n) = 28n - 12n \] Simplifying: \[ 8\sum x_i = 16n \] \[ \sum x_i = 2n \] Step 4: Finding Variance The variance formula is: \[ \text{Variance} = \frac{1}{n} \sum x_i^2 - \left(\frac{1}{n} \sum x_i \right)^2 \] Substituting the known values: \[ \text{Variance} = \frac{1}{n} (16n) - \left( \frac{2n}{n} \right)^2 \] \[ \text{Variance} = 16 - 4 \] \[ \text{Variance} = 12 \] Step 5: Final Answer
\[Correct Answer: (1) \ 12\]Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Find the variance of the following frequency distribution:
| Class Interval | ||||
| 0--4 | 4--8 | 8--12 | 12--16 | |
| Frequency | 1 | 2 | 2 | 1 |