Let \(B = (h,k)\).The midpoint of \(AB\) is \(\left( \frac{h + 1}{2}, \frac{k
- 2}{2} \right)\), and this point lies on the line \(x
- y + 5 = 0\), so
\[\frac{h + 1}{2}
- \frac{k
- 2}{2} + 5 = 0.\]This simplifies to \(h
- k + 13 = 0\).
[asy]
unitsize(2 cm);
pair A, B, C, D, E;
A = (1,
-2);
B = (2,15);
C = (8,
-4);
D = (A + B)/2;
E = (A + C)/2;
draw(A
-
-B
-
-C
-
-cycle);
draw(D
-
-D + 3*(D
- E));
draw(E
-
-E + 3*(E
- D));
label("$A$", A, SE);
label("$B$", B, N);
label("$C$", C, SE);
label("$D$", D, NE);
label("$E$", E, S);
[/asy]
Also, the slope of \(AB\) is \(\frac{k + 2}{h
- 1}\), and the slope of the line \(x
- y + 5 = 0\) is 1, so
\[\frac{k + 2}{h
- 1} \cdot 1 =
-1.\]This simplifies to \(h + k + 1 = 0\).
Solving the system \(h
- k + 13 = 0\) and \(h + k + 1 = 0\), we find \((h,k) = (
-7,6)\).
Let \(C = (p,q)\).The midpoint of \(AC\) is \(\left( \frac{p + 1}{2}, \frac{q
- 2}{2} \right)\), and this point lies on the line \(x + 2y = 0\), so
\[\frac{p + 1}{2} + 2 \cdot \frac{q
- 2}{2} = 0.\]This simplifies to \(p + 2q
- 3 = 0\).
Also, the slope of \(AC\) is \(\frac{q + 2}{p
- 1}\), and the slope of the line \(x + 2y = 0\) is \(
-\frac{1}{2}\), so
\[\frac{q + 2}{p
- 1} \cdot
-\frac{1}{2} =
-1.\]This simplifies to \(p
- 2q
- 5 = 0\).
Solving the system \(p + 2q
- 3 = 0\) and \(p
- 2q
- 5 = 0\), we find \((p,q) = (4,
-1)\).
Then the slope of \(BC\) is
\[\frac{6
- (
-1)}{
-7
- 4} =
-\frac{7}{11},\]so the equation of line \(BC\) is of the form
\[y
- 6 =
-\frac{7}{11} (x + 7),\]which simplifies to \(14x + 23y
- 40 = 0\).