Question:

In ABC \triangle ABC , if (a+c)2=b2+3ca (a+c)^2 = b^2 + 3ca , then a+c2R \frac{a+c}{2R} is:

Show Hint

Use cosine rule transformations to express sides in terms of angles for trigonometric equation-based problems.
Updated On: Mar 25, 2025
  • 32 \frac{\sqrt{3}}{2}
  • 3cos(AC2) \sqrt{3} \cos \left(\frac{A - C}{2} \right)
  • cos(AC2) \cos \left(\frac{A - C}{2} \right)
  • sin(AC2) \sin \left(\frac{A - C}{2} \right)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given a triangle ABC \triangle ABC with the condition: (a+c)2=b2+3ac (a + c)^2 = b^2 + 3ac We need to find a+c2R \frac{a + c}{2R} . Step 1: Expand the Given Equation Expanding both sides, a2+c2+2ac=b2+3ac a^2 + c^2 + 2ac = b^2 + 3ac Rearranging, a2+c2b2=ac a^2 + c^2 - b^2 = ac Using the cosine rule, cosB=a2+c2b22ac \cos B = \frac{a^2 + c^2 - b^2}{2ac} From the earlier equation, a2+c2b2=ac a^2 + c^2 - b^2 = ac Thus, cosB=ac2ac=12 \cos B = \frac{ac}{2ac} = \frac{1}{2} So, B=60 B = 60^\circ Step 2: Find a+c2R \frac{a + c}{2R} By the sine rule, asinA=2RandcsinC=2R \frac{a}{\sin A} = 2R \quad \text{and} \quad \frac{c}{\sin C} = 2R Now, a+c=2RsinA+2RsinC=2R(sinA+sinC) a + c = 2R \sin A + 2R \sin C = 2R (\sin A + \sin C) From the sine addition identity: sinA+sinC=2sin(A+C2)cos(AC2) \sin A + \sin C = 2 \sin \left(\frac{A + C}{2} \right) \cos \left(\frac{A - C}{2} \right) Since A+C=180B=120 A + C = 180^\circ - B = 120^\circ , sin(A+C2)=sin60=32 \sin \left(\frac{A + C}{2} \right) = \sin 60^\circ = \frac{\sqrt{3}}{2} Thus, a+c2R=2sin(A+C2)cos(AC2) \frac{a + c}{2R} = 2 \sin \left(\frac{A + C}{2} \right) \cos \left(\frac{A - C}{2} \right) =2×32×cos(AC2) = 2 \times \frac{\sqrt{3}}{2} \times \cos \left(\frac{A - C}{2} \right) =3cos(AC2) = \sqrt{3} \cos \left(\frac{A - C}{2} \right) Step 3: Final Answer 

CorrectAnswer:(2) 3cos(AC2)Correct Answer: (2) \ \sqrt{3} \cos \left(\frac{A - C}{2} \right)
Was this answer helpful?
0
0

Top Questions on Trigonometry

View More Questions