We are given a triangle △ABC with the condition: (a+c)2=b2+3ac We need to find 2Ra+c. Step 1: Expand the Given Equation Expanding both sides, a2+c2+2ac=b2+3ac Rearranging, a2+c2−b2=ac Using the cosine rule, cosB=2aca2+c2−b2 From the earlier equation, a2+c2−b2=ac Thus, cosB=2acac=21 So, B=60∘ Step 2: Find 2Ra+c By the sine rule, sinAa=2RandsinCc=2R Now, a+c=2RsinA+2RsinC=2R(sinA+sinC) From the sine addition identity: sinA+sinC=2sin(2A+C)cos(2A−C) Since A+C=180∘−B=120∘, sin(2A+C)=sin60∘=23 Thus, 2Ra+c=2sin(2A+C)cos(2A−C)=2×23×cos(2A−C)=3cos(2A−C) Step 3: Final Answer