We are given a triangle \( \triangle ABC \) with the condition: \[ (a + c)^2 = b^2 + 3ac \] We need to find \( \frac{a + c}{2R} \). Step 1: Expand the Given Equation Expanding both sides, \[ a^2 + c^2 + 2ac = b^2 + 3ac \] Rearranging, \[ a^2 + c^2 - b^2 = ac \] Using the cosine rule, \[ \cos B = \frac{a^2 + c^2 - b^2}{2ac} \] From the earlier equation, \[ a^2 + c^2 - b^2 = ac \] Thus, \[ \cos B = \frac{ac}{2ac} = \frac{1}{2} \] So, \[ B = 60^\circ \] Step 2: Find \( \frac{a + c}{2R} \) By the sine rule, \[ \frac{a}{\sin A} = 2R \quad \text{and} \quad \frac{c}{\sin C} = 2R \] Now, \[ a + c = 2R \sin A + 2R \sin C = 2R (\sin A + \sin C) \] From the sine addition identity: \[ \sin A + \sin C = 2 \sin \left(\frac{A + C}{2} \right) \cos \left(\frac{A - C}{2} \right) \] Since \( A + C = 180^\circ - B = 120^\circ \), \[ \sin \left(\frac{A + C}{2} \right) = \sin 60^\circ = \frac{\sqrt{3}}{2} \] Thus, \[ \frac{a + c}{2R} = 2 \sin \left(\frac{A + C}{2} \right) \cos \left(\frac{A - C}{2} \right) \] \[ = 2 \times \frac{\sqrt{3}}{2} \times \cos \left(\frac{A - C}{2} \right) \] \[ = \sqrt{3} \cos \left(\frac{A - C}{2} \right) \] Step 3: Final Answer
\[Correct Answer: (2) \ \sqrt{3} \cos \left(\frac{A - C}{2} \right)\]