We are given two vectors \( \vec{a} = 2\vec{i} + 2\vec{j} + \vec{k} \) and \( \vec{b} = \vec{i} - 2\vec{j} + 2\vec{k} \). We need to find a vector that is perpendicular to both \( \vec{a} \) and \( \vec{b} \), and whose magnitude is 6.
Step 1: Find the Cross Product of \( \vec{a} \) and \( \vec{b} \)
The vector that is perpendicular to both \( \vec{a} \) and \( \vec{b} \) is given by the cross product \( \vec{a} \times \vec{b} \).
The formula for the cross product of two vectors \( \vec{a} = a_1\vec{i} + a_2\vec{j} + a_3\vec{k} \) and \( \vec{b} = b_1\vec{i} + b_2\vec{j} + b_3\vec{k} \) is: \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}. \] Substitute the components of \( \vec{a} \) and \( \vec{b} \): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 2 & 1 \\ 1 & -2 & 2 \end{vmatrix}. \] Now, compute the determinant: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 2 & 1 \\ -2 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 2 \\ 1 & -2 \end{vmatrix}. \] Simplifying each of the 2x2 determinants: \[ = \hat{i} \left( (2)(2) - (1)(-2) \right) - \hat{j} \left( (2)(2) - (1)(1) \right) + \hat{k} \left( (2)(-2) - (2)(1) \right) \] \[ = \hat{i} (4 + 2) - \hat{j} (4 - 1) + \hat{k} (-4 - 2) \] \[ = 6\hat{i} - 3\hat{j} - 6\hat{k}. \] Thus, the cross product is: \[ \vec{a} \times \vec{b} = 6\vec{i} - 3\vec{j} - 6\vec{k}. \]
Step 2: Find the Magnitude of the Cross Product
The magnitude of the cross product \( |\vec{a} \times \vec{b}| \) is: \[ |\vec{a} \times \vec{b}| = \sqrt{(6)^2 + (-3)^2 + (-6)^2} = \sqrt{36 + 9 + 36} = \sqrt{81} = 9. \]
Step 3: Scale the Cross Product to Have Magnitude 6
We need a vector that is perpendicular to both \( \vec{a} \) and \( \vec{b} \) and has magnitude 6. The current cross product has magnitude 9, so we scale it by a factor of \( \frac{6}{9} = \frac{2}{3} \). Thus, the required vector is: \[ \frac{2}{3} \times (6\vec{i} - 3\vec{j} - 6\vec{k}) = 4\vec{i} - 2\vec{j} - 4\vec{k}. \]
Step 4: Final Answer
The vector that is perpendicular to both \( \vec{a} \) and \( \vec{b} \) and has magnitude 6 is \( 2(2\vec{i} - \vec{j} - 2\vec{k}) \).
Thus, the correct answer is \( \boxed{2(2\vec{i} - \vec{j} - 2\vec{k})} \), corresponding to option (E).
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to: