Step 1: We are given that \( \sin^{-1} (\sin \theta) = \theta \) for \( \theta \) in the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \).
Since \( \frac{5\pi}{6} \) is outside this range, we need to adjust it to an equivalent angle within the range.
The sine function is periodic, and \( \sin \left( \frac{5\pi}{6} \right) = \sin \left( \pi - \frac{5\pi}{6} \right) = \sin \left( \frac{\pi}{6} \right) \).
Thus, \( \sin^{-1} \left( \sin \left( \frac{5\pi}{6} \right) \right) = \frac{\pi}{6} \).
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.