We are given two vectors: \[ \vec{a} = 2\vec{i} + 4\vec{j} + 7\vec{k} \quad {and} \quad \vec{b} = 4\vec{i} + 7\vec{j} + 2\vec{k}. \] We are asked to find the angle between the vectors \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \).
Step 1: Calculate \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \) First, compute the sum \( \vec{a} + \vec{b} \) and the difference \( \vec{a} - \vec{b} \): \[ \vec{a} + \vec{b} = (2\vec{i} + 4\vec{j} + 7\vec{k}) + (4\vec{i} + 7\vec{j} + 2\vec{k}) = 6\vec{i} + 11\vec{j} + 9\vec{k}, \] \[ \vec{a} - \vec{b} = (2\vec{i} + 4\vec{j} + 7\vec{k}) - (4\vec{i} + 7\vec{j} + 2\vec{k}) = -2\vec{i} - 3\vec{j} + 5\vec{k}. \]
Step 2: Use the Dot Product Formula The cosine of the angle \( \theta \) between two vectors \( \vec{u} \) and \( \vec{v} \) is given by the formula: \[ \cos \theta = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|}. \] Let \( \vec{u} = \vec{a} + \vec{b} \) and \( \vec{v} = \vec{a} - \vec{b} \). To find the angle between them, we need to compute their dot product and magnitudes.
Step 3: Compute the Dot Product \( \vec{u} \cdot \vec{v} \) \[ \vec{u} \cdot \vec{v} = (6\vec{i} + 11\vec{j} + 9\vec{k}) \cdot (-2\vec{i} - 3\vec{j} + 5\vec{k}). \] Using the distributive property of the dot product: \[ \vec{u} \cdot \vec{v} = 6(-2) + 11(-3) + 9(5) = -12 - 33 + 45 = 0. \]
Step 4: Conclude the Angle Since the dot product \( \vec{u} \cdot \vec{v} = 0 \), this means the vectors \( \vec{u} = \vec{a} + \vec{b} \) and \( \vec{v} = \vec{a} - \vec{b} \) are perpendicular to each other. The angle between two perpendicular vectors is \( \frac{\pi}{2} \).
Thus, the angle between \( \vec{a} + \vec{b} \) and \( \vec{a} - \vec{b} \) is \( \frac{\pi}{2} \).
Thus, the correct answer is \( \boxed{\frac{\pi}{2}} \), corresponding to option (C).
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to: