For \( \sin^{-1}(y) \) to be valid, \( y \) must lie between -1 and 1.
Therefore, the expression \( 2x - 1 \) must lie between -1 and 1: \[ -1 \leq 2x - 1 \leq 1 \] Solving this inequality: \[ 0 \leq x \leq 1 \] Thus, the domain is \( [0, 1] \).
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.