The expression involves cosines of multiple angles. Using the properties of trigonometric identities, particularly that the sum of cosines of equally spaced angles results in zero or half values, we can simplify the terms.
Step 1: These cosines can be combined in a sum, recognizing the symmetry about 180 degrees.
The sum turns out to be: \[ \cos 26^\circ + \cos 54^\circ + \cos 126^\circ + \cos 206^\circ + \cos 240^\circ = -\frac{1}{2} \]
Draw a rough sketch for the curve $y = 2 + |x + 1|$. Using integration, find the area of the region bounded by the curve $y = 2 + |x + 1|$, $x = -4$, $x = 3$, and $y = 0$.
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to: