Step 1: The slope of line \( PQ \) is given by: \[ m_{PQ} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 - 4}{3 - (-3)} = \frac{-3}{6} = -\frac{1}{2} \] Step 2: The slope of the line perpendicular to \( PQ \) is the negative reciprocal of \( m_{PQ} \).
Hence: \[ m_{{perpendicular}} = -\frac{1}{-\frac{1}{2}} = 2 \]
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals