Step 1: We are given that \( \sin x = \frac{3}{5} \).
We can use the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \) to find \( \cos x \): \[ \cos^2 x = 1 - \sin^2 x = 1 - \left( \frac{3}{5} \right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] \[ \cos x = \frac{4}{5} \] Step 2: Now, we compute \( \sec x + \tan x \): \[ \sec x = \frac{1}{\cos x} = \frac{1}{\frac{4}{5}} = \frac{5}{4}, \quad \tan x = \frac{\sin x}{\cos x} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] \[ \sec x + \tan x = \frac{5}{4} + \frac{3}{4} = \frac{8}{4} = 2 \]
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to: