Step 1: We are given \( 3 \tan^{-1}(x) + \cot^{-1}(x) = \pi \).
Using the identity \( \cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x) \), we get: \[ 3 \tan^{-1}(x) + \left( \frac{\pi}{2} - \tan^{-1}(x) \right) = \pi \] Simplifying: \[ 2 \tan^{-1}(x) = \frac{\pi}{2} \] \[ \tan^{-1}(x) = \frac{\pi}{4} \] Thus, \( x = 1 \).
Step 2: Now, calculate \( \sin^{-1}(x) \) for \( x = 1 \): \[ \sin^{-1}(1) = \frac{\pi}{2} \]
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.