Question:

If \( 3 \tan^{-1}(x) + \cot^{-1}(x) = \pi \), then \( \sin^{-1}(x) \) is:

Show Hint

Use the identity for inverse trigonometric functions to simplify the equation and solve for \( x \).
Updated On: Mar 7, 2025
  • \( \frac{\pi}{12} \)
  • \( \frac{\pi}{3} \)
  • \( \frac{\pi}{4} \)
  • \( \frac{\pi}{6} \)
  • \( \frac{\pi}{2} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is

Solution and Explanation

Step 1: We are given \( 3 \tan^{-1}(x) + \cot^{-1}(x) = \pi \). 
Using the identity \( \cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x) \), we get: \[ 3 \tan^{-1}(x) + \left( \frac{\pi}{2} - \tan^{-1}(x) \right) = \pi \] Simplifying: \[ 2 \tan^{-1}(x) = \frac{\pi}{2} \] \[ \tan^{-1}(x) = \frac{\pi}{4} \] Thus, \( x = 1 \). 
Step 2: Now, calculate \( \sin^{-1}(x) \) for \( x = 1 \): \[ \sin^{-1}(1) = \frac{\pi}{2} \]

Was this answer helpful?
0
0