Step 1: We are given \( 3 \tan^{-1}(x) + \cot^{-1}(x) = \pi \).
Using the identity \( \cot^{-1}(x) = \frac{\pi}{2} - \tan^{-1}(x) \), we get: \[ 3 \tan^{-1}(x) + \left( \frac{\pi}{2} - \tan^{-1}(x) \right) = \pi \] Simplifying: \[ 2 \tan^{-1}(x) = \frac{\pi}{2} \] \[ \tan^{-1}(x) = \frac{\pi}{4} \] Thus, \( x = 1 \).
Step 2: Now, calculate \( \sin^{-1}(x) \) for \( x = 1 \): \[ \sin^{-1}(1) = \frac{\pi}{2} \]
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals