We are given the expression: \[ {tan}^{-1} 2 - {tan}^{-1} \left( \frac{1}{3} \right). \] To solve this, we use the following formula for the difference of two inverse tangents: \[ {tan}^{-1} a - {tan}^{-1} b = {tan}^{-1} \left( \frac{a - b}{1 + ab} \right), \] where \( a = 2 \) and \( b = \frac{1}{3} \).
Substitute these values into the formula: \[ {tan}^{-1} 2 - {tan}^{-1} \left( \frac{1}{3} \right) = {tan}^{-1} \left( \frac{2 - \frac{1}{3}}{1 + 2 \cdot \frac{1}{3}} \right). \] Now simplify the numerator and denominator: \[ \frac{2 - \frac{1}{3}}{1 + \frac{2}{3}} = \frac{\frac{6}{3} - \frac{1}{3}}{\frac{3}{3} + \frac{2}{3}} = \frac{\frac{5}{3}}{\frac{5}{3}} = 1. \] Thus, we have: \[ {tan}^{-1} 2 - {tan}^{-1} \left( \frac{1}{3} \right) = {tan}^{-1} 1. \] Since \( {tan}^{-1} 1 = \frac{\pi}{4} \), we conclude that: \[ {tan}^{-1} 2 - {tan}^{-1} \left( \frac{1}{3} \right) = \frac{\pi}{4}. \] Thus, the correct answer is \( \boxed{\frac{\pi}{4}} \), corresponding to option (C)
Let \[ f(t)=\int \left(\frac{1-\sin(\log_e t)}{1-\cos(\log_e t)}\right)dt,\; t>1. \] If $f(e^{\pi/2})=-e^{\pi/2}$ and $f(e^{\pi/4})=\alpha e^{\pi/4}$, then $\alpha$ equals