We are given the expression: \[ {tan}^{-1} 2 - {tan}^{-1} \left( \frac{1}{3} \right). \] To solve this, we use the following formula for the difference of two inverse tangents: \[ {tan}^{-1} a - {tan}^{-1} b = {tan}^{-1} \left( \frac{a - b}{1 + ab} \right), \] where \( a = 2 \) and \( b = \frac{1}{3} \).
Substitute these values into the formula: \[ {tan}^{-1} 2 - {tan}^{-1} \left( \frac{1}{3} \right) = {tan}^{-1} \left( \frac{2 - \frac{1}{3}}{1 + 2 \cdot \frac{1}{3}} \right). \] Now simplify the numerator and denominator: \[ \frac{2 - \frac{1}{3}}{1 + \frac{2}{3}} = \frac{\frac{6}{3} - \frac{1}{3}}{\frac{3}{3} + \frac{2}{3}} = \frac{\frac{5}{3}}{\frac{5}{3}} = 1. \] Thus, we have: \[ {tan}^{-1} 2 - {tan}^{-1} \left( \frac{1}{3} \right) = {tan}^{-1} 1. \] Since \( {tan}^{-1} 1 = \frac{\pi}{4} \), we conclude that: \[ {tan}^{-1} 2 - {tan}^{-1} \left( \frac{1}{3} \right) = \frac{\pi}{4}. \] Thus, the correct answer is \( \boxed{\frac{\pi}{4}} \), corresponding to option (C)
If the function \[ f(x) = \begin{cases} \frac{2}{x} \left( \sin(k_1 + 1)x + \sin(k_2 -1)x \right), & x<0 \\ 4, & x = 0 \\ \frac{2}{x} \log_e \left( \frac{2 + k_1 x}{2 + k_2 x} \right), & x>0 \end{cases} \] is continuous at \( x = 0 \), then \( k_1^2 + k_2^2 \) is equal to:
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to: