Let \( f(x) = \log_e(x) \) and let \( g(x) = \frac{x - 2}{x^2 + 1} \). Then the domain of the composite function \( f \circ g \) is:
The value of \[ \left(\frac{10i}{(2-i)(3-i)}\right)^{2024} \] is equal to:
If \( 0 \leq x \leq 5 \), then the greatest value of \( \alpha \) and the least value of \( \beta \) satisfying the inequalities \( \alpha \leq 3x + 5 \leq \beta \) are, respectively,
Let \[ A = \begin{pmatrix} 3 & -2 & 1 \\ -1 & 3 & -1 \end{pmatrix} \] and \[ B = \begin{pmatrix} 1 \\ \alpha \\ -1 \end{pmatrix}. \] If \[ AB = \begin{pmatrix} -2 \\ 6 \end{pmatrix}, \] then the value of \( \alpha \) is equal to:
The coefficient of \( x^{14}y \) in the expansion of \( (x^2 + \sqrt{y})^9 \) is:
The value of \( x \) that satisfies the equation:
\[ \begin{vmatrix} x & 1 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & -2 \end{vmatrix} = 6 \]