\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Let \(f(x) = a^{3x}\) and \(a^5 = 8\). Then the value of \(f(5)\) is equal to:
The area bounded by the parabola \(y = x^2 + 2\) and the lines \(y = x\), \(x = 1\) and \(x = 2\) (in square units) is:
The value of the limit \(\lim_{t \to 0} \frac{(5-t)^2 - 25}{t}\) is equal to:
If \( a = \frac{1 + \tan \theta + \sec \theta}{2 \sec \theta} \) and \( b = \frac{\sin \theta}{1 - \sec \theta + \tan \theta} \), then \( \frac{a}{b} \) is equal to:
\[ \int_0^{\frac{\pi}{4}} (\tan^3 x + \tan^5 x) \, dx \]
If a line makes angles \(\alpha\), \(\beta\), and \(\gamma\) with the positive directions of the x, y, and z-axis respectively, then \(\cos 2\alpha + \cos 2\beta + \cos 2\gamma\) equals:
If \( 0 \leq \alpha \leq \frac{\pi}{2} \) and \(\sin \left(\alpha - \frac{\pi}{12}\right) = \frac{1}{2}\), then \(\alpha\) is equal to:
If \( a = \tan^{-1}\left(\frac{4}{3}\right) \) and \( b = \tan^{-1}\left(\frac{1}{3}\right) \), where \( 0<a, b<\frac{\pi}{2} \), then \( a - b \) is:
If \(\sec \theta + \tan \theta = 2 + \sqrt{3}\), then \(\sec \theta - \tan \theta\) is:
The value of the limit \(\lim_{x \to 0} \frac{(2 + \cos 3x) \sin^2 x}{x \tan(2x)}\) is equal to:
Let \( f(x) = \frac{x^2 + 40}{7x} \), \( x \neq 0 \), \( x \in [4,5] \). The value of \( c \) in \( [4,5] \) at which \( f'(c) = -\frac{1}{7} \) is equal to: