The area bounded by the parabola \(y = x^2 + 2\) and the lines \(y = x\), \(x = 1\) and \(x = 2\) (in square units) is:
To find the area, integrate the difference between the upper function and the lower function from \(x = 1\) to \(x = 2\).
The upper function in this case is the parabola \(y = x^2 + 2\), and the lower function is the line \(y = x\).
Calculate the integral: \[ {Area} = \int_{1}^{2} ((x^2 + 2) - x) \, dx \] \[ = \int_{1}^{2} (x^2 - x + 2) \, dx \] \[ = \left[ \frac{x^3}{3} - \frac{x^2}{2} + 2x \right]_1^2 \] \[ = \left( \frac{2^3}{3} - \frac{2^2}{2} + 2 \times 2 \right) - \left( \frac{1^3}{3} - \frac{1^2}{2} + 2 \times 1 \right) \] \[ = \left( \frac{8}{3} - 2 + 4 \right) - \left( \frac{1}{3} - \frac{1}{2} + 2 \right) \] \[ = \left( \frac{8}{3} + 2 \right) - \left( \frac{1}{3} + \frac{3}{2} \right) \] \[ = \left( \frac{8}{3} + 2 \right) - \left( \frac{2}{6} + \frac{9}{6} \right) \] \[ = \left( \frac{8}{3} + \frac{6}{3} \right) - \left( \frac{11}{6} \right) \] \[ = \frac{14}{3} - \frac{11}{6} \] \[ = \frac{28}{6} - \frac{11}{6} \] \[ = \frac{17}{6} \] Thus, the area bounded by the given curves is \(\frac{17}{6}\) square units.
Let \(f(x) = a^{3x}\) and \(a^5 = 8\). Then the value of \(f(5)\) is equal to:
For the reaction:
\[ 2A + B \rightarrow 2C + D \]
The following kinetic data were obtained for three different experiments performed at the same temperature:
\[ \begin{array}{|c|c|c|c|} \hline \text{Experiment} & [A]_0 \, (\text{M}) & [B]_0 \, (\text{M}) & \text{Initial rate} \, (\text{M/s}) \\ \hline I & 0.10 & 0.10 & 0.10 \\ II & 0.20 & 0.10 & 0.40 \\ III & 0.20 & 0.20 & 0.40 \\ \hline \end{array} \]
The total order and order in [B] for the reaction are respectively: