\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
Then \( f'(-4) \) is equal to:We are given the piecewise function:
\[ f(x) = \begin{cases} x\left( \frac{\pi}{2} + x \right), & \text{if } x \geq 0 \\ x\left( \frac{\pi}{2} - x \right), & \text{if } x < 0 \end{cases} \]
We are asked to find \( f'(-4) \).
Since \( -4 < 0 \), we will use the second case of the piecewise function:
\[ f(x) = x\left( \frac{\pi}{2} - x \right) \]
Step 1: Differentiate the function
Differentiate \( f(x) = x\left( \frac{\pi}{2} - x \right) \) using the product rule:
\[ f'(x) = \frac{d}{dx} \left( x \left( \frac{\pi}{2} - x \right) \right) \]
The product rule states that:
\[ f'(x) = \frac{d}{dx} (x) \cdot \left( \frac{\pi}{2} - x \right) + x \cdot \frac{d}{dx} \left( \frac{\pi}{2} - x \right) \]
Now calculate the derivatives:
\[ \frac{d}{dx} (x) = 1 \quad \text{and} \quad \frac{d}{dx} \left( \frac{\pi}{2} - x \right) = -1 \]
Thus:
\[ f'(x) = 1 \cdot \left( \frac{\pi}{2} - x \right) + x \cdot (-1) \]
\[ f'(x) = \frac{\pi}{2} - x - x = \frac{\pi}{2} - 2x \]
Step 2: Evaluate at \( x = -4 \)
Now substitute \( x = -4 \) into the derivative:
\[ f'(-4) = \frac{\pi}{2} - 2(-4) = \frac{\pi}{2} + 8 \]
Simplify:
\[ f'(-4) = \frac{\pi}{2} + \frac{16}{2} = \frac{\pi + 16}{2} \]
Thus, the value of \( f'(-4) \) is:
\[ f'(-4) = \frac{16 + \pi}{2} \]Thus, the correct answer is option (B), \( \frac{16 + \pi}{2} \).