Let y = y(x) be a solution of the differential equation (x cos x)dy +(xy sin x + y cos x – l)dx = 0, 0 < x < 2π. If3πy(3π)=3, then ∣6πy“(6π)+2y′(6π)∣ is equal to______.
Given Differential Equation:(xcosx)dxdy+(xysinx+ycosx−1)=0,0<x<2π Rewriting the equation: dxdy+xcosxxsinx+cosxy=xcosx1 Identifying the Integrating Factor (IF): IF=xsecx Multiplying through by the IF and solving the integral: y⋅xsecx=tanx+c Using the initial condition y(3π)=π33: 3πsec(3π)⋅π33=3+c⟹c=3 Final solution: y⋅xsecx=tanx+3 Evaluating the expression: ∣Answer∣=2
Was this answer helpful?
0
2
Top Questions on General and Particular Solutions of a Differential Equation