Question:

Let y = y(x) be a solution of the differential equation (x cos x)dy +(xy sin x + y cos x – l)dx = 0, 0 < x < π2\frac{π}{2}. Ifπ3y(π3)=3\frac{π}{3}y(\frac{π}{3})=\sqrt3, then π6y(π6)+2y(π6)| \frac{π}{6 }y“( \frac{π}{6})+2 y'( \frac{π}{6})|  is equal to______.

Updated On: Mar 21, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 2

Solution and Explanation

Given Differential Equation: (xcosx)dydx+(xysinx+ycosx1)=0,0<x<π2 (x \cos x) \frac{dy}{dx} + \left(xy \sin x + y \cos x - 1\right) = 0, \quad 0 < x < \frac{\pi}{2}  
Rewriting the equation: dydx+xsinx+cosxxcosxy=1xcosx \frac{dy}{dx} + \frac{x \sin x + \cos x}{x \cos x}y = \frac{1}{x \cos x}  
Identifying the Integrating Factor (IF): IF=xsecx \text{IF} = x \sec x  
Multiplying through by the IF and solving the integral: yxsecx=tanx+c y \cdot x \sec x = \tan x + c  
Using the initial condition y(π3)=33πy\left(\frac{\pi}{3}\right) = \frac{3\sqrt{3}}{\pi}: π3sec(π3)33π=3+c    c=3 \frac{\pi}{3} \sec \left(\frac{\pi}{3}\right) \cdot \frac{3\sqrt{3}}{\pi} = \sqrt{3} + c \implies c = \sqrt{3}  
Final solution: yxsecx=tanx+3 y \cdot x \sec x = \tan x + \sqrt{3}  
Evaluating the expression: Answer=2 \left|\text{Answer} \right| = 2

Was this answer helpful?
0
2

Top Questions on General and Particular Solutions of a Differential Equation

View More Questions