Given Differential Equation: \[ (x \cos x) \frac{dy}{dx} + \left(xy \sin x + y \cos x - 1\right) = 0, \quad 0 < x < \frac{\pi}{2} \]
Rewriting the equation: \[ \frac{dy}{dx} + \frac{x \sin x + \cos x}{x \cos x}y = \frac{1}{x \cos x} \]
Identifying the Integrating Factor (IF): \[ \text{IF} = x \sec x \]
Multiplying through by the IF and solving the integral: \[ y \cdot x \sec x = \tan x + c \]
Using the initial condition \(y\left(\frac{\pi}{3}\right) = \frac{3\sqrt{3}}{\pi}\): \[ \frac{\pi}{3} \sec \left(\frac{\pi}{3}\right) \cdot \frac{3\sqrt{3}}{\pi} = \sqrt{3} + c \implies c = \sqrt{3} \]
Final solution: \[ y \cdot x \sec x = \tan x + \sqrt{3} \]
Evaluating the expression: \[ \left|\text{Answer} \right| = 2 \]
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)