Given Differential Equation: \[ (x \cos x) \frac{dy}{dx} + \left(xy \sin x + y \cos x - 1\right) = 0, \quad 0 < x < \frac{\pi}{2} \]
Rewriting the equation: \[ \frac{dy}{dx} + \frac{x \sin x + \cos x}{x \cos x}y = \frac{1}{x \cos x} \]
Identifying the Integrating Factor (IF): \[ \text{IF} = x \sec x \]
Multiplying through by the IF and solving the integral: \[ y \cdot x \sec x = \tan x + c \]
Using the initial condition \(y\left(\frac{\pi}{3}\right) = \frac{3\sqrt{3}}{\pi}\): \[ \frac{\pi}{3} \sec \left(\frac{\pi}{3}\right) \cdot \frac{3\sqrt{3}}{\pi} = \sqrt{3} + c \implies c = \sqrt{3} \]
Final solution: \[ y \cdot x \sec x = \tan x + \sqrt{3} \]
Evaluating the expression: \[ \left|\text{Answer} \right| = 2 \]
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is:
Let $[r]$ denote the largest integer not exceeding $r$, and the roots of the equation $ 3z^2 + 6z + 5 + \alpha(x^2 + 2x + 2) = 0 $ are complex numbers whenever $ \alpha > L $ and $ \alpha < M $. If $ (L - M) $ is minimum, then the greatest value of $[r]$ such that $ Ly^2 + My + r < 0 $ for all $ y \in \mathbb{R} $ is:
Match List-I with List-II: List-I