Given Differential Equation: \[ (x \cos x) \frac{dy}{dx} + \left(xy \sin x + y \cos x - 1\right) = 0, \quad 0 < x < \frac{\pi}{2} \]
Rewriting the equation: \[ \frac{dy}{dx} + \frac{x \sin x + \cos x}{x \cos x}y = \frac{1}{x \cos x} \]
Identifying the Integrating Factor (IF): \[ \text{IF} = x \sec x \]
Multiplying through by the IF and solving the integral: \[ y \cdot x \sec x = \tan x + c \]
Using the initial condition \(y\left(\frac{\pi}{3}\right) = \frac{3\sqrt{3}}{\pi}\): \[ \frac{\pi}{3} \sec \left(\frac{\pi}{3}\right) \cdot \frac{3\sqrt{3}}{\pi} = \sqrt{3} + c \implies c = \sqrt{3} \]
Final solution: \[ y \cdot x \sec x = \tan x + \sqrt{3} \]
Evaluating the expression: \[ \left|\text{Answer} \right| = 2 \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: