Given:
\( f(x) = \frac{(\tan 1)x + \log_{12}3}{x \log_{12}34 - \tan 1} \)
Let:
\( A = \tan 1, \quad B = \log_{12}3, \quad C = \log_{12}34 \)
Rewriting \(f(x)\):
\( f(x) = \frac{Ax + B}{xC - A} \)
Step 1: Evaluate \(f(f(x))\):
\( f(f(x)) = f \left( \frac{Ax+B}{xC-A} \right) \)
Substitute \(f(x)\) into \(f\):
\( f(f(x)) = \frac{A \left( \frac{Ax+B}{xC-A} \right) + B}{C \left( \frac{Ax+B}{xC-A} \right) - A} \)
Simplify:
\( f(f(x)) = \frac{A(Ax+B) + B(xC - A)}{C(Ax+B) - A(xC - A)} \)
Expand numerator and denominator:
Numerator: \( A^2x + AB + xBC - AB = x(A^2 + BC) \)
Denominator: \( ACx + BC - ACx + A^2 = A^2 + BC \)
Thus:
\( f(f(x)) = \frac{x(A^2 + BC)}{A^2 + BC} = x \)
Step 2: Evaluate \(f(f(4/x))\):
\( f(f(4/x)) = \frac{4}{x} \)
Step 3: Evaluate \(f(f(x)) + f(f(4/x))\):
\( f(f(x)) + f(f(4/x)) = x + \frac{4}{x} \)
Step 4: Apply AM-GM Inequality: Using AM-GM:
\( \frac{x + \frac{4}{x}}{2} \geq \sqrt{x \cdot \frac{4}{x}} \)
\( x + \frac{4}{x} \geq 4 \)
Final Answer: \( x + \frac{4}{x} \geq 4 \)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)