thebinomial theoremandrelatedidentitiesforsimplifyingsumsof binomialcoefficients. Thesumofthefirstntermsinabinomialexpansioncan oftenbeexpressedinaclosedformusingcombinations
Expand the binomial expression: \[ (1 - x)^{100} = C_0 - C_1x + C_2x^2 - C_3x^3 + \cdots - C_{99}x^{99} + C_{100}x^{100}. \]
Collecting the coefficients: \[ C_0 - C_1 + C_2 - C_3 + \cdots - C_{99} + C_{100} = 0. \]
Now consider twice the coefficients: \[ 2(C_0 - C_1 + C_2 - \cdots - C_9) + C_{50} = 0. \]
Simplify further: \[ C_0 - C_1 + C_2 - \cdots + C_{99} = -\frac{1}{2} C_{50}. \]
Using the properties of binomial coefficients: \[ C_{50} = \binom{100}{50}, \quad C_0 - C_1 + C_2 - \cdots + C_{99} = -\frac{1}{2} \binom{100}{50}. \]
Finally, calculate: \[ C_{49} = \frac{1}{2} \frac{100!}{50! \cdot 50!} = -\frac{99}{49}. \]
Thus: \[ C_0 - C_1 + C_2 - \cdots + C_{99} = -\frac{99}{49}. \]
Sum of coefficient of first 50 terms
\((t)\) \(= ^{100}C_0-^{100}C_1+...+^{100}C_{40}\)
Now
\(^{100}C_0-^{100}C_1+...+^{100}C_{100}=0\)
\(2[^{100}C_0-^{100}C_1+...]+ ^{100}C_{50}=0\)
\(\therefore \; t= -\frac{1}{2}^{100}C_{50}\)
The correct option is (B): \(-\frac{^{100}C_{50}}{2}\)
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
The binomial expansion formula involves binomial coefficients which are of the form
(n/k)(or) nCk and it is calculated using the formula, nCk =n! / [(n - k)! k!]. The binomial expansion formula is also known as the binomial theorem. Here are the binomial expansion formulas.
This binomial expansion formula gives the expansion of (x + y)n where 'n' is a natural number. The expansion of (x + y)n has (n + 1) terms. This formula says:
We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn
General Term = Tr+1 = nCr xn-r . yr