Question:

\[ f(x) = \log_e \left( 4x^2 + 11x + 6 \right) + \sin^{-1} \left( 4x + 3 \right) + \cos^{-1} \left( \frac{10x + 6}{3} \right) \]then \( 36|\alpha + \beta| \) is equal to:

Updated On: Jun 7, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Understanding the Problem

We need to find the domain of the function \( f(x) = \log_e(4x^2 + 11x + 6) + \sin^{-1}(4x + 3) + \cos^{-1}\left(\frac{10x + 6}{3}\right) \), determine α and β, and then calculate \( 36|\alpha + \beta| \)

Solution

1. Domain of \( \log_e(4x^2 + 11x + 6) \):

The logarithm is defined when \( 4x^2 + 11x + 6 > 0 \)

Factoring the quadratic: \( (4x + 3)(x + 2) > 0 \)

The solution is \( x \in (-\infty, -2) \cup (-\frac{3}{4}, \infty) \)

2. Domain of \( \sin^{-1}(4x + 3) \):

The arcsine is defined when \( -1 \le 4x + 3 \le 1 \)

\( -4 \le 4x \le -2 \)

\( -1 \le x \le -\frac{1}{2} \)

Thus, \( x \in [-1, -\frac{1}{2}] \)

3. Domain of \( \cos^{-1}\left(\frac{10x + 6}{3}\right) \):

The arccosine is defined when \( -1 \le \frac{10x + 6}{3} \le 1 \)

\( -3 \le 10x + 6 \le 3 \)

\( -9 \le 10x \le -3 \)

\( -\frac{9}{10} \le x \le -\frac{3}{10} \)

Thus, \( x \in [-\frac{9}{10}, -\frac{3}{10}] \)

4. Combining the Domains:

We need the intersection of the three domains.

From \( (-\infty, -2) \cup (-\frac{3}{4}, \infty) \) and \( [-1, -\frac{1}{2}] \), we get \( [-\frac{3}{4}, -\frac{1}{2}] \)

From \( [-\frac{3}{4}, -\frac{1}{2}] \) and \( [-\frac{9}{10}, -\frac{3}{10}] \), we get \( [-\frac{9}{10}, -\frac{3}{10}] \)

5. Finding α and β:

\( \alpha = -\frac{9}{10} \) and \( \beta = -\frac{3}{10} \)

6. Calculating α + β:

\( \alpha + \beta = -\frac{9}{10} - \frac{3}{10} = -\frac{12}{10} = -\frac{6}{5} \)

7. Calculating 36|α + β|:

\( 36|\alpha + \beta| = 36 \left| -\frac{6}{5} \right| = 36 \times \frac{6}{5} = \frac{216}{5} = 43.2 \)

Final Answer

The correct answer is 43.2.

Was this answer helpful?
3
4

Concepts Used:

Inverse Trigonometric Functions

The inverse trigonometric functions are also called arcus functions or anti trigonometric functions. These are the inverse functions of the trigonometric functions with suitably restricted domains. Specifically, they are the inverse functions of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle’s trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

Domain and Range Of Inverse Functions

Considering the domain and range of the inverse functions, following formulas are important to be noted:

  • sin(sin−1x) = x, if -1 ≤ x ≤ 1
  • cos(cos−1x) = x, if -1 ≤ x ≤ 1
  • tan(tan−1x) = x, if -∞ ≤ x ≤∞
  • cot(cot−1x) = x, if -∞≤ x ≤∞
  • sec(sec−1x) = x, if -∞ ≤ x ≤ -1 or 1 ≤ x ≤ ∞
  • cosec(cosec−1x) = x, if -∞ ≤ x ≤ -1 or 1 ≤ x ≤ ∞

Also, the following formulas are defined for inverse trigonometric functions.

  • sin−1(sin y) = y, if -π/2 ≤ y ≤ π/2
  • cos−1(cos y) =y, if 0 ≤ y ≤ π
  • tan−1(tan y) = y, if -π/2 <y< π/2
  • cot−1(cot y) = y if 0<y< π
  • sec−1(sec y) = y, if 0 ≤ y ≤ π, y ≠ π/2

cosec−1(cosec y) = y if -π/2 ≤ y ≤ π/2, y ≠ 0