The complex number $z=\frac{i-1}{\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}}$ is equal to :
Among the relations $S=\left\{(a, b): a, b \in R -\{0\}, 2+\frac{a}{b}>\right\}$ and $T=\left\{(a, b): a, b \in R , a^2-b^2 \in Z\right\}$,
Let the mean and standard deviation of marks of class A of $100$ students be respectively $40$ and $\alpha$ (> 0 ), and the mean and standard deviation of marks of class B of $n$ students be respectively $55$ and 30 $-\alpha$. If the mean and variance of the marks of the combined class of $100+ n$ students are respectively $50$ and $350$ , then the sum of variances of classes $A$ and $B$ is :
The line $l_1$ passes through the point $(2,6,2)$ and is perpendicular to the plane $2 x+y-2 z=10$. Then the shortest distance between the line $l_1$ and the line $\frac{x+1}{2}=\frac{y+4}{-3}=\frac{z}{2}$ is :
Let \(\alpha>0\) If $\int\limits_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} d x=\frac{16+20 \sqrt{2}}{15}$, then $\alpha$ is equal to :