The 4th term of the GP is given by: \[ T_4 = ar^3 = 500, \] where \( a \) is the first term and \( r = \frac{1}{m} \) is the common ratio. Thus: \[ a \cdot \left(\frac{1}{m}\right)^3 = 500 \implies a = 500 \cdot m^3. \] The sum of the first \( n \) terms of the GP is: \[ S_n = a \frac{1 - r^n}{1 - r}, \quad \text{where } r = \frac{1}{m}. \] Using the conditions: 1. \( S_6 > S_5 + 1 \), 2. \( S_7 < S_6 + \frac{1}{2} \).
Condition 1: \( S_6 > S_5 + 1 \): \[ S_6 - S_5 > 1 \implies ar^5 > 1. \] Substitute \( a = 500 \cdot m^3 \) and \( r = \frac{1}{m} \): \[ 500 \cdot m^3 \cdot \left(\frac{1}{m}\right)^5 > 1 \implies \frac{500}{m^2} > 1 \implies m^2 < 500. \]
Condition 2: \( S_7 < S_6 + \frac{1}{2} \): \[ S_7 - S_6 < \frac{1}{2} \implies ar^6 < \frac{1}{2}. \] Substitute \( a = 500 \cdot m^3 \) and \( r = \frac{1}{m} \): \[ 500 \cdot m^3 \cdot \left(\frac{1}{m}\right)^6 < \frac{1}{2} \implies \frac{500}{m^3} < \frac{1}{2} \implies m^3 > 1000. \]
Combining conditions: \[ m^2 < 500 \quad \text{and} \quad m^3 > 1000. \] The values of \( m \) that satisfy both conditions are: \[ m = 11, 12, 13, \dots, 22. \] The total number of possible values of \( m \) is: \[ \boxed{12}. \]
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

A set of numbers that have been arranged or sorted in a definite order is called a sequence. The terms in a series mention the numbers in the sequence, and each term is distinguished or prominent from the others by a common difference. The end of the sequence is frequently represented by three linked dots, which specifies that the sequence is not broken and that it will continue further.
Read More: Sequence and Series
There are four types of sequences such as: