\(1 + d^2 = (m + q)^2\)
\((1 + d)^2 = m^2 + q^2\)
\((1 + d)^2 = (m + q)^2\)
\(1 + d^2 = m^2 + q^2\)
The given matrix is:
\[ A = \begin{bmatrix} m & n \\ p & q \end{bmatrix}. \]
Determinant of \( A \):
\[ |A| = m \cdot q - n \cdot p = d. \]
Adjugate of \( A \):
The adjugate of \( A \), denoted as \( \text{Adj}(A) \), is:
\[ \text{Adj}(A) = \begin{bmatrix} q & -n \\ -p & m \end{bmatrix}. \]
Given Condition:
We are given the condition:
\[ |A - d \cdot \text{Adj}(A)| = 0. \]
Substituting \( A \) and \( \text{Adj}(A) \) into the equation:
\[ A - d \cdot \text{Adj}(A) = \begin{bmatrix} m & n \\ p & q \end{bmatrix} - d \begin{bmatrix} q & -n \\ -p & m \end{bmatrix}. \]
This simplifies to:
\[ A - d \cdot \text{Adj}(A) = \begin{bmatrix} m - dq & n + dn \\ p + dp & q - dm \end{bmatrix}. \]
Determinant of \( A - d \cdot \text{Adj}(A) \):
The determinant is:
\[ |A - d \cdot \text{Adj}(A)| = \begin{vmatrix} m - dq & n + dn \\ p + dp & q - dm \end{vmatrix}. \]
Expanding the determinant:
\[ |A - d \cdot \text{Adj}(A)| = (m - dq)(q - dm) - (n + dn)(p + dp). \]
Simplify the terms:
\[ |A - d \cdot \text{Adj}(A)| = m \cdot q - m \cdot dm - dq \cdot q + d^2 \cdot q \cdot m - (n \cdot p + n \cdot dp + dn \cdot p + d^2 \cdot n \cdot p). \]
Using \( d = m \cdot q - n \cdot p \), the terms simplify further to:
\[ (1 + d)^2 = (m + q)^2. \]
Conclusion:
The correct answer is:
\[ (1 + d)^2 = (m + q)^2. \]
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: