The given equation is:
logcosx⋅cotx+4logsinx⋅tanx=1
Simplify the Logarithms
Using the change of base formula:
logcosx⋅cotx=lncosx−lnsinx
Substitute these into the equation:
lncosx−lnsinx+4⋅(lnsinx−lncosx)=1
Simplify the Terms
Combine the terms:
(lncosx)(lnsinx)(lncosx)2−(lnsinx)(lncosx)+4⋅(lnsinx)2−(lncosx)(lnsinx)=1
Factorize:
(lnsinx)2−4(lnsinx)(lncosx)+4(lncosx)2=(lncosx)(lnsinx)
Simplify further:
lnsinx=2lncosx
Relate Sine and Cosine
Exponentiate both sides:
sin2x=e2lncosx=(cosx)2
Thus:
sin2x+sinx−1=0
Solve the Quadratic Equation
Solve the quadratic equation sin2x+sinx−1=0 using the quadratic formula:
2(1)−1±12−4(1)(−1)=2−1±5
Since x∈[0,2π], we take the positive root:
sinx=2−1+5
Find α+β
Comparing with sin−1(2−1+5), we identify:
α=−1,β=5
Thus:
α+β=−1+5=4
Conclusion: The value of α+β is 4. Therefore, the correct answer is 4.