The given equation is:
\[ \log \cos x \cdot \cot x + 4 \log \sin x \cdot \tan x = 1 \]
Simplify the Logarithms
Using the change of base formula:
\[ \log \cos x \cdot \cot x = \ln \cos x - \ln \sin x \]
Substitute these into the equation:
\[ \ln \cos x - \ln \sin x + 4 \cdot \left( \ln \sin x - \ln \cos x \right) = 1 \]
Simplify the Terms
Combine the terms:
\[ \frac{(\ln \cos x)^2 - (\ln \sin x)(\ln \cos x) + 4 \cdot (\ln \sin x)^2 - (\ln \cos x)(\ln \sin x)}{(\ln \cos x)(\ln \sin x)} = 1 \]
Factorize:
\[ (\ln \sin x)^2 - 4 (\ln \sin x)(\ln \cos x) + 4 (\ln \cos x)^2 = (\ln \cos x)(\ln \sin x) \]
Simplify further:
\[ \ln \sin x = 2 \ln \cos x \]
Relate Sine and Cosine
Exponentiate both sides:
\[ \sin^2 x = e^{2 \ln \cos x} = (\cos x)^2 \]
Thus:
\[ \sin^2 x + \sin x - 1 = 0 \]
Solve the Quadratic Equation
Solve the quadratic equation \( \sin^2 x + \sin x - 1 = 0 \) using the quadratic formula:
\[ \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)} = \frac{-1 \pm \sqrt{5}}{2} \]
Since \( x \in [0, \frac{\pi}{2}] \), we take the positive root:
\[ \sin x = \frac{-1 + \sqrt{5}}{2} \]
Find \( \alpha + \beta \)
Comparing with \( \sin^{-1} \left( \frac{-1 + \sqrt{5}}{2} \right) \), we identify:
\[ \alpha = -1, \quad \beta = 5 \]
Thus:
\[ \alpha + \beta = -1 + 5 = 4 \]
Conclusion: The value of \( \alpha + \beta \) is 4. Therefore, the correct answer is \( \boxed{4} \).
If \( \alpha>\beta>\gamma>0 \), then the expression \[ \cot^{-1} \beta + \left( \frac{1 + \beta^2}{\alpha - \beta} \right) + \cot^{-1} \gamma + \left( \frac{1 + \gamma^2}{\beta - \gamma} \right) + \cot^{-1} \alpha + \left( \frac{1 + \alpha^2}{\gamma - \alpha} \right) \] is equal to:
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32