Question:

If for logcos x (cot x) - 4log(sin x) cot x = 1, x = sin-1 (α+β2)(\frac{\alpha+\sqrt{\beta}}{2}). Find (α + β), given x ∈ (0,π2)(0,\frac{\pi}{2})

Updated On: Mar 19, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 4

Solution and Explanation

The given equation is:

logcosxcotx+4logsinxtanx=1 \log \cos x \cdot \cot x + 4 \log \sin x \cdot \tan x = 1

Simplify the Logarithms

Using the change of base formula:

logcosxcotx=lncosxlnsinx \log \cos x \cdot \cot x = \ln \cos x - \ln \sin x

Substitute these into the equation:

lncosxlnsinx+4(lnsinxlncosx)=1 \ln \cos x - \ln \sin x + 4 \cdot \left( \ln \sin x - \ln \cos x \right) = 1

Simplify the Terms

Combine the terms:

(lncosx)2(lnsinx)(lncosx)+4(lnsinx)2(lncosx)(lnsinx)(lncosx)(lnsinx)=1 \frac{(\ln \cos x)^2 - (\ln \sin x)(\ln \cos x) + 4 \cdot (\ln \sin x)^2 - (\ln \cos x)(\ln \sin x)}{(\ln \cos x)(\ln \sin x)} = 1

Factorize:

(lnsinx)24(lnsinx)(lncosx)+4(lncosx)2=(lncosx)(lnsinx) (\ln \sin x)^2 - 4 (\ln \sin x)(\ln \cos x) + 4 (\ln \cos x)^2 = (\ln \cos x)(\ln \sin x)

Simplify further:

lnsinx=2lncosx \ln \sin x = 2 \ln \cos x

Relate Sine and Cosine

Exponentiate both sides:

sin2x=e2lncosx=(cosx)2 \sin^2 x = e^{2 \ln \cos x} = (\cos x)^2

Thus:

sin2x+sinx1=0 \sin^2 x + \sin x - 1 = 0

Solve the Quadratic Equation

Solve the quadratic equation sin2x+sinx1=0 \sin^2 x + \sin x - 1 = 0 using the quadratic formula:

1±124(1)(1)2(1)=1±52 \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)} = \frac{-1 \pm \sqrt{5}}{2}

Since x[0,π2] x \in [0, \frac{\pi}{2}] , we take the positive root:

sinx=1+52 \sin x = \frac{-1 + \sqrt{5}}{2}

Find α+β \alpha + \beta

Comparing with sin1(1+52) \sin^{-1} \left( \frac{-1 + \sqrt{5}}{2} \right) , we identify:

α=1,β=5 \alpha = -1, \quad \beta = 5

Thus:

α+β=1+5=4 \alpha + \beta = -1 + 5 = 4

Conclusion: The value of α+β \alpha + \beta is 4. Therefore, the correct answer is 4 \boxed{4} .

Was this answer helpful?
1
0

Top Questions on Trigonometric Functions

View More Questions