The given equation is:
\[ \log \cos x \cdot \cot x + 4 \log \sin x \cdot \tan x = 1 \]
Simplify the Logarithms
Using the change of base formula:
\[ \log \cos x \cdot \cot x = \ln \cos x - \ln \sin x \]
Substitute these into the equation:
\[ \ln \cos x - \ln \sin x + 4 \cdot \left( \ln \sin x - \ln \cos x \right) = 1 \]
Simplify the Terms
Combine the terms:
\[ \frac{(\ln \cos x)^2 - (\ln \sin x)(\ln \cos x) + 4 \cdot (\ln \sin x)^2 - (\ln \cos x)(\ln \sin x)}{(\ln \cos x)(\ln \sin x)} = 1 \]
Factorize:
\[ (\ln \sin x)^2 - 4 (\ln \sin x)(\ln \cos x) + 4 (\ln \cos x)^2 = (\ln \cos x)(\ln \sin x) \]
Simplify further:
\[ \ln \sin x = 2 \ln \cos x \]
Relate Sine and Cosine
Exponentiate both sides:
\[ \sin^2 x = e^{2 \ln \cos x} = (\cos x)^2 \]
Thus:
\[ \sin^2 x + \sin x - 1 = 0 \]
Solve the Quadratic Equation
Solve the quadratic equation \( \sin^2 x + \sin x - 1 = 0 \) using the quadratic formula:
\[ \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2(1)} = \frac{-1 \pm \sqrt{5}}{2} \]
Since \( x \in [0, \frac{\pi}{2}] \), we take the positive root:
\[ \sin x = \frac{-1 + \sqrt{5}}{2} \]
Find \( \alpha + \beta \)
Comparing with \( \sin^{-1} \left( \frac{-1 + \sqrt{5}}{2} \right) \), we identify:
\[ \alpha = -1, \quad \beta = 5 \]
Thus:
\[ \alpha + \beta = -1 + 5 = 4 \]
Conclusion: The value of \( \alpha + \beta \) is 4. Therefore, the correct answer is \( \boxed{4} \).
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: