If the value of the integral
\[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin^x 2023}} \right) dx = \frac{\pi}{4} (\pi + a) - 2, \]
then the value of \(a\) is:
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
All the letters of the word "GTWENTY" are written in all possible ways with or without meaning, and these words are arranged as in a dictionary. The serial number of the word "GTWENTY" is:
For \( 0 < a < 1 \), the value of the integral \[ \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 - 2a \cos x + a^2} \] is: