The equation of the ellipse is:
\[
\frac{x^2}{16} + \frac{y^2}{9} = 1.
\]
The equation of the tangent at point \( P(4\cos\theta, 3\sin\theta) \) is:
\[
\frac{x \cos\theta}{4} + \frac{y \sin\theta}{3} = 1.
\]
The tangent intersects the \( x \)-axis at \( A(4\sec\theta, 0) \) and the \( y \)-axis at \( B(0, 3\csc\theta) \).
The length of \( AB \) is:
\[
AB = \sqrt{(4\sec\theta)^2 + (3\csc\theta)^2}.
\]
Simplify:
\[
AB = \sqrt{16\sec^2\theta + 9\csc^2\theta}.
\]
Using the identity:
\[
\sec^2\theta + \csc^2\theta \geq 2,
\]
we find:
\[
AB \geq \sqrt{25 + 16\tan^2\theta + 9\cot^2\theta} \geq 7.
\]
The minimum length of \( AB \) is:
\[
\boxed{7}.
\]