We are tasked to evaluate the limit:
\[ \lim_{x \to 0} \frac{\int_0^x \frac{t^3}{t^6 + 1} dt}{x^4}. \]
Substituting \(x = 0\):
\[ \int_0^x \frac{t^3}{t^6 + 1} dt = 0 \quad \text{and} \quad x^4 = 0. \]
This results in the indeterminate form \(\frac{0}{0}\).
Using L’Hôpital’s Rule, differentiate the numerator and denominator with respect to \(x\):
\[ \lim_{x \to 0} \frac{\int_0^x \frac{t^3}{t^6 + 1} dt}{x^4} = \lim_{x \to 0} \frac{\frac{x^3}{x^6 + 1}}{4x^3}. \]
Simplify the limit:
\[ \lim_{x \to 0} \frac{\frac{x^3}{x^6 + 1}}{4x^3} = \lim_{x \to 0} \frac{1}{4(x^6 + 1)}. \]
As \(x \to 0\), \(x^6 \to 0\), so:
\[ \frac{1}{4(x^6 + 1)} \to \frac{1}{4(0 + 1)} = \frac{1}{4}. \]
Finally, multiply the result by 48:
\[ 48 \cdot \frac{1}{4} = 12. \]
The value of the limit is:
\[ \boxed{12}. \]
For \( \alpha, \beta, \gamma \in \mathbb{R} \), if \[ \lim_{x \to 0} \frac{x^2 \sin(\alpha x) + (\gamma - 1)e^{x^2}}{\sin(2x - \beta x)} = 3, \] then \( \beta + \gamma - \alpha \) is equal to:
If $\lim_{x \to 1} \frac{(x-1)(6+\lambda \cos(x-1)) + \mu \sin(1-x)}{(x-1)^3} = -1$, where $\lambda, \mu \in \mathbb{R}$, then $\lambda + \mu$ is equal to

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.