6875
6575
6825
6528
The functional equation is:
\[ 5f(x + y) = f(x) \cdot f(y) \]
Substitute \(y = 0\):
\[ 5f(x + 0) = f(x) \cdot f(0) \quad \Rightarrow \quad 5f(x) = f(x) \cdot f(0) \]
Divide by \( f(x) \) (since \( f(x) > 0 \)):
\[ f(0) = 5 \]
Substitute \(y = 1\):
\[ 5f(x + 1) = f(x) \cdot f(1) \]
Divide by \( f(x) \):
\[ \frac{f(x + 1)}{f(x)} = f(1) \]
This shows \( f(x + 1) = f(x) \cdot c \), where \( c = f(1) \).
Using the recursive relation, we get:
\[ f(n) = f(0) \cdot c^n = 5 \cdot c^n \]
From \( f(3) = 320 \):
\[ f(3) = f(0) \cdot c^3 = 5 \cdot c^3 \]
\[ 320 = 5 \cdot c^3 \quad \Rightarrow \quad c^3 = 64 \quad \Rightarrow \quad c = 4 \]
Thus, \( f(1) = 5 \cdot c = 5 \cdot 4 = 20 \).
Now compute:
\[ \sum_{n=0}^{5} f(n) \]
\[ f(n) = 5 \cdot 4^n \]
\[ \sum_{n=0}^{5} f(n) = 5 \cdot (4^0 + 4^1 + 4^2 + 4^3 + 4^4 + 4^5) \]
The summation inside the parentheses is a geometric series:
\[ \text{Sum} = \frac{4^6 - 1}{4 - 1} = \frac{4096 - 1}{3} = \frac{4095}{3} = 1365 \]
\[ \sum_{n=0}^{5} f(n) = 5 \cdot 1365 = 6825 \]
Conclusion: The value of \( \sum_{n=0}^{5} f(n) \) is 6825. Therefore, the correct answer is \( \boxed{6825} \).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: