Let $f$ be $a$ differentiable function defined on $\left[0, \frac{\pi}{2}\right]$ such that $f(x)>0;$ and $f(x)+\int\limits_0^x f(t) \sqrt{1-\left(\log _e f(t)\right)^2} d t=e, \forall x \in\left[0, \frac{\pi}{2}\right]$ Then $\left(6 \log _e f\left(\frac{\pi}{6}\right)\right)^2$ is equal to _______
Let $A =\left[ a _{i j}\right], a _{i j} \in Z \cap[0,4], 1 \leq i, j \leq 2$ The number of matrices $A$ such that the sum of all entries is a prime number $p \in(2,13)$ is _____
Let the area of the region $\left\{(x, y):|2 x-1| \leq y \leq\left|x^2-x\right|, 0 \leq x \leq 1\right\}$ be $A$ Then $(6 A +11)^2$ is equal to ____