The two planes are given as:
\[ P_1 : \vec{r} \cdot (3\hat{i} - 5\hat{j} + \hat{k}) = 7 \] \[ P_2 : \vec{r} \cdot (\lambda\hat{i} + \hat{j} - 3\hat{k}) = 9 \]
The angle \( \theta \) between the planes is given by:
\[ \sin \theta = \frac{|\vec{n}_1 \times \vec{n}_2|}{|\vec{n}_1||\vec{n}_2|} \]
where \( \vec{n}_1 = \langle 3, -5, 1 \rangle \) and \( \vec{n}_2 = \langle \lambda, 1, -3 \rangle \).
The magnitude of the cross product is:
\[ \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -5 & 1 \\ \lambda & 1 & -3 \end{vmatrix} = -i + 7j + 11k \]
From this:
\[ \sin \theta = \frac{|2\sqrt{6}|}{5} \]
We are given \( \cos \theta = \frac{1}{5} \). Square both sides and simplify:
\[ \cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1||\vec{n}_2|} \] \[ \cos \theta = \frac{3\lambda - 8}{\sqrt{35} \cdot \sqrt{\lambda^2 + 10}} \]
Substitute \( \cos \theta = \frac{1}{5} \):
\[ \frac{(3\lambda - 8)^2}{35(\lambda^2 + 10)} = \frac{1}{25} \]
Multiply through and simplify:
\[ 19\lambda^2 - 120\lambda + 125 = 0 \]
Factorize:
\[ 19\lambda^2 - 95\lambda - 25\lambda + 125 = 0 \] \[ \lambda = 5, \, \lambda = \frac{25}{19} \]
The point \( \vec{r} = (38\lambda, 10\lambda, 2) \) is substituted into plane \( P_1 \). For \( \lambda = 5 \), the coordinates become \( (50, 50, 2) \).
The perpendicular distance from \( P_1 \) is:
\[ \frac{|3 \cdot 50 - 5 \cdot 50 + 2 - 7|}{\sqrt{35}} = \frac{105}{\sqrt{35}} \]
Square the result:
\[ \left(\frac{105}{\sqrt{35}}\right)^2 = 315 \]
The final result is \( 315 \).
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to: