The two planes are given as:
\[ P_1 : \vec{r} \cdot (3\hat{i} - 5\hat{j} + \hat{k}) = 7 \] \[ P_2 : \vec{r} \cdot (\lambda\hat{i} + \hat{j} - 3\hat{k}) = 9 \]
The angle \( \theta \) between the planes is given by:
\[ \sin \theta = \frac{|\vec{n}_1 \times \vec{n}_2|}{|\vec{n}_1||\vec{n}_2|} \]
where \( \vec{n}_1 = \langle 3, -5, 1 \rangle \) and \( \vec{n}_2 = \langle \lambda, 1, -3 \rangle \).
The magnitude of the cross product is:
\[ \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -5 & 1 \\ \lambda & 1 & -3 \end{vmatrix} = -i + 7j + 11k \]
From this:
\[ \sin \theta = \frac{|2\sqrt{6}|}{5} \]
We are given \( \cos \theta = \frac{1}{5} \). Square both sides and simplify:
\[ \cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1||\vec{n}_2|} \] \[ \cos \theta = \frac{3\lambda - 8}{\sqrt{35} \cdot \sqrt{\lambda^2 + 10}} \]
Substitute \( \cos \theta = \frac{1}{5} \):
\[ \frac{(3\lambda - 8)^2}{35(\lambda^2 + 10)} = \frac{1}{25} \]
Multiply through and simplify:
\[ 19\lambda^2 - 120\lambda + 125 = 0 \]
Factorize:
\[ 19\lambda^2 - 95\lambda - 25\lambda + 125 = 0 \] \[ \lambda = 5, \, \lambda = \frac{25}{19} \]
The point \( \vec{r} = (38\lambda, 10\lambda, 2) \) is substituted into plane \( P_1 \). For \( \lambda = 5 \), the coordinates become \( (50, 50, 2) \).
The perpendicular distance from \( P_1 \) is:
\[ \frac{|3 \cdot 50 - 5 \cdot 50 + 2 - 7|}{\sqrt{35}} = \frac{105}{\sqrt{35}} \]
Square the result:
\[ \left(\frac{105}{\sqrt{35}}\right)^2 = 315 \]
The final result is \( 315 \).
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |