The two planes are given as:
\[ P_1 : \vec{r} \cdot (3\hat{i} - 5\hat{j} + \hat{k}) = 7 \] \[ P_2 : \vec{r} \cdot (\lambda\hat{i} + \hat{j} - 3\hat{k}) = 9 \]
The angle \( \theta \) between the planes is given by:
\[ \sin \theta = \frac{|\vec{n}_1 \times \vec{n}_2|}{|\vec{n}_1||\vec{n}_2|} \]
where \( \vec{n}_1 = \langle 3, -5, 1 \rangle \) and \( \vec{n}_2 = \langle \lambda, 1, -3 \rangle \).
The magnitude of the cross product is:
\[ \vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -5 & 1 \\ \lambda & 1 & -3 \end{vmatrix} = -i + 7j + 11k \]
From this:
\[ \sin \theta = \frac{|2\sqrt{6}|}{5} \]
We are given \( \cos \theta = \frac{1}{5} \). Square both sides and simplify:
\[ \cos \theta = \frac{\vec{n}_1 \cdot \vec{n}_2}{|\vec{n}_1||\vec{n}_2|} \] \[ \cos \theta = \frac{3\lambda - 8}{\sqrt{35} \cdot \sqrt{\lambda^2 + 10}} \]
Substitute \( \cos \theta = \frac{1}{5} \):
\[ \frac{(3\lambda - 8)^2}{35(\lambda^2 + 10)} = \frac{1}{25} \]
Multiply through and simplify:
\[ 19\lambda^2 - 120\lambda + 125 = 0 \]
Factorize:
\[ 19\lambda^2 - 95\lambda - 25\lambda + 125 = 0 \] \[ \lambda = 5, \, \lambda = \frac{25}{19} \]
The point \( \vec{r} = (38\lambda, 10\lambda, 2) \) is substituted into plane \( P_1 \). For \( \lambda = 5 \), the coordinates become \( (50, 50, 2) \).
The perpendicular distance from \( P_1 \) is:
\[ \frac{|3 \cdot 50 - 5 \cdot 50 + 2 - 7|}{\sqrt{35}} = \frac{105}{\sqrt{35}} \]
Square the result:
\[ \left(\frac{105}{\sqrt{35}}\right)^2 = 315 \]
The final result is \( 315 \).
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
