We are given the complex number \( z = 1 + i \) and the equation:
\[ z_1 = \frac{i + \overline{z}(1 - i)}{\overline{z}(1 - z)}, \]
where \(\overline{z}\) denotes the complex conjugate of \(z\). We are tasked to find \(12 \pi \cdot \arg(z_1)\).
The complex conjugate of \(z = 1 + i\) is:
\[ \overline{z} = 1 - i. \]
The numerator is \(i + \overline{z}(1 - i)\). Substitute \(\overline{z} = 1 - i\):
\[ \overline{z}(1 - i) = (1 - i)(1 - i). \]
Expand the product:
\[ (1 - i)(1 - i) = 1 - i - i + i^2 = 1 - 2i - 1 = -2i. \]
Thus, the numerator becomes:
\[ i + (-2i) = -i. \]
The denominator is \(\overline{z}(1 - z)\). Substitute \(\overline{z} = 1 - i\) and \(z = 1 + i\):
\[ \overline{z}(1 - z) = (1 - i)(1 - (1 + i)) = (1 - i)(-i). \]
Expand the product:
\[ (1 - i)(-i) = -i + i^2 = -i - 1 = -(1 + i). \]
Substitute the simplified numerator and denominator into the expression for \(z_1\):
\[ z_1 = \frac{-i}{-(1 + i)} = \frac{i}{1 + i}. \]
To simplify further, multiply the numerator and denominator by the complex conjugate of the denominator, \(1 - i\):
\[ z_1 = \frac{i(1 - i)}{(1 + i)(1 - i)}. \]
Expand the denominator:
\[ (1 + i)(1 - i) = 1 - i^2 = 1 - (-1) = 2. \]
Expand the numerator:
\[ i(1 - i) = i - i^2 = i + 1. \]
Thus:
\[ z_1 = \frac{1 + i}{2} = \frac{1}{2} + \frac{i}{2}. \]
The complex number \(z_1 = \frac{1}{2} + \frac{i}{2}\) has real part \(\frac{1}{2}\) and imaginary part \(\frac{1}{2}\). The argument is given by:
\[ \arg(z_1) = \tan^{-1}\left(\frac{\text{Imaginary part}}{\text{Real part}}\right) = \tan^{-1}\left(\frac{\frac{1}{2}}{\frac{1}{2}}\right) = \tan^{-1}(1). \]
Since \(\tan^{-1}(1) = \frac{\pi}{4}\), we have:
\[ \arg(z_1) = \frac{\pi}{4}. \]
Finally, multiply the argument by \(12 \pi\):
\[ 12 \pi \cdot \arg(z_1) = 12 \pi \cdot \frac{\pi}{4} = 3. \]
The value of \(12 \pi \cdot \arg(z_1)\) is:
\[ \boxed{3}. \]
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then: