Let the plane $P : 8 x+\alpha_1 y+\alpha_2 z+12=0$ be parallel to the line $L : \frac{x+2}{2}=\frac{y-3}{3}=\frac{z+4}{5}$. If the intercept of $P$ on the $y$-axis is 1 , then the distance between $P$ and $L$ is :
Let\( S={x∈R:0<x<1 and\ 2 tan−1\frac{(1+x)}{(1−x)}=cos^{−1}\frac{(1-x^2)}{(1+x^2)}}\). If n(S) denotes the number of elements in S then :
The absolute minimum value, of the function $f(x)=\left|x^2-x+1\right|+\left[x^2-x+1\right]$, where $[t]$ denotes the greatest integer function, in the interval $[-1,2]$, is: