Let us denote \[ p := \Bigl(\bigl(A \wedge (B \vee C)\bigr) \Rightarrow (A \vee B)\Bigr) \Rightarrow A. \] First, recall that an implication \(X \Rightarrow Y\) is logically equivalent to \(\lnot X \vee Y\). Thus \[ (A \wedge (B \vee C)) \Rightarrow (A \vee B) \longleftrightarrow \lnot\bigl(A \wedge (B \vee C)\bigr) \vee (A \vee B). \] Hence \[ p \longleftrightarrow \Bigl(\lnot\bigl(A \wedge (B \vee C)\bigr) \vee (A \vee B)\Bigr) \Rightarrow A. \] Again using \(X \Rightarrow A\) is \(\lnot X \vee A\), we get \[ p \longleftrightarrow \lnot\Bigl(\lnot\bigl(A \wedge (B \vee C)\bigr) \vee (A \vee B)\Bigr) \vee A. \] Distributing the negation inside, \[ \lnot\Bigl(\lnot\bigl(A \wedge (B \vee C)\bigr) \vee (A \vee B)\Bigr) \longleftrightarrow \bigl(A \wedge (B \vee C)\bigr) \wedge \lnot(A \vee B). \] Therefore \[ p \longleftrightarrow \Bigl[\bigl(A \wedge (B \vee C)\bigr) \wedge \lnot(A \vee B)\Bigr] \vee A. \] Because the part \(\bigl(A \wedge (B \vee C)\bigr) \wedge \lnot(A \vee B)\) is inconsistent with \(A \vee B\), one can verify that this disjunction simplifies logically to just \(A\). Hence \(p \equiv A\). Thus \[ \lnot p \equiv \lnot A. \] So the negation of the original statement is logically equivalent to \(\lnot A\).
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
