Question:

The negation of the statement \(((A\land(B\lor C)) ⇒ (A\lor B)) ⇒ A\) is

Updated On: Mar 20, 2025
  • a fallacy
  • equivalent to \(B\lor \sim C\)
  • equivalent to \(\sim A\)
  • equivalent to \(\sim C\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Let us denote \[ p := \Bigl(\bigl(A \wedge (B \vee C)\bigr) \Rightarrow (A \vee B)\Bigr) \Rightarrow A. \] First, recall that an implication \(X \Rightarrow Y\) is logically equivalent to \(\lnot X \vee Y\). Thus \[ (A \wedge (B \vee C)) \Rightarrow (A \vee B) \longleftrightarrow \lnot\bigl(A \wedge (B \vee C)\bigr) \vee (A \vee B). \] Hence \[ p \longleftrightarrow \Bigl(\lnot\bigl(A \wedge (B \vee C)\bigr) \vee (A \vee B)\Bigr) \Rightarrow A. \] Again using \(X \Rightarrow A\) is \(\lnot X \vee A\), we get \[ p \longleftrightarrow \lnot\Bigl(\lnot\bigl(A \wedge (B \vee C)\bigr) \vee (A \vee B)\Bigr) \vee A. \] Distributing the negation inside, \[ \lnot\Bigl(\lnot\bigl(A \wedge (B \vee C)\bigr) \vee (A \vee B)\Bigr) \longleftrightarrow \bigl(A \wedge (B \vee C)\bigr) \wedge \lnot(A \vee B). \] Therefore \[ p \longleftrightarrow \Bigl[\bigl(A \wedge (B \vee C)\bigr) \wedge \lnot(A \vee B)\Bigr] \vee A. \] Because the part \(\bigl(A \wedge (B \vee C)\bigr) \wedge \lnot(A \vee B)\) is inconsistent with \(A \vee B\), one can verify that this disjunction simplifies logically to just \(A\). Hence \(p \equiv A\). Thus \[ \lnot p \equiv \lnot A. \] So the negation of the original statement is logically equivalent to \(\lnot A\).

Was this answer helpful?
0
0