Let us denote \[ p := \Bigl(\bigl(A \wedge (B \vee C)\bigr) \Rightarrow (A \vee B)\Bigr) \Rightarrow A. \] First, recall that an implication \(X \Rightarrow Y\) is logically equivalent to \(\lnot X \vee Y\). Thus \[ (A \wedge (B \vee C)) \Rightarrow (A \vee B) \longleftrightarrow \lnot\bigl(A \wedge (B \vee C)\bigr) \vee (A \vee B). \] Hence \[ p \longleftrightarrow \Bigl(\lnot\bigl(A \wedge (B \vee C)\bigr) \vee (A \vee B)\Bigr) \Rightarrow A. \] Again using \(X \Rightarrow A\) is \(\lnot X \vee A\), we get \[ p \longleftrightarrow \lnot\Bigl(\lnot\bigl(A \wedge (B \vee C)\bigr) \vee (A \vee B)\Bigr) \vee A. \] Distributing the negation inside, \[ \lnot\Bigl(\lnot\bigl(A \wedge (B \vee C)\bigr) \vee (A \vee B)\Bigr) \longleftrightarrow \bigl(A \wedge (B \vee C)\bigr) \wedge \lnot(A \vee B). \] Therefore \[ p \longleftrightarrow \Bigl[\bigl(A \wedge (B \vee C)\bigr) \wedge \lnot(A \vee B)\Bigr] \vee A. \] Because the part \(\bigl(A \wedge (B \vee C)\bigr) \wedge \lnot(A \vee B)\) is inconsistent with \(A \vee B\), one can verify that this disjunction simplifies logically to just \(A\). Hence \(p \equiv A\). Thus \[ \lnot p \equiv \lnot A. \] So the negation of the original statement is logically equivalent to \(\lnot A\).
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: