Solution:
Let the coefficient matrix be
\[
A = \begin{vmatrix} 2 & 4 & 2a \\ 1 & 2 & 3 \\ 2 & -5 & 2 \end{vmatrix}, \quad \Delta = \det(A).
\]
Expanding:
\[
\Delta = 2\begin{vmatrix} 2 & 3 \\ -5 & 2 \end{vmatrix} - 4\begin{vmatrix} 1 & 3 \\ 2 & 2 \end{vmatrix} + 2a\begin{vmatrix} 1 & 2 \\ 2 & -5 \end{vmatrix}.
\]
Evaluating each minor:
\[
\begin{vmatrix} 2 & 3 \\ -5 & 2 \end{vmatrix} = 4 + 15 = 19, \quad \begin{vmatrix} 1 & 3 \\ 2 & 2 \end{vmatrix} = 1 \cdot 2 - 3 \cdot 2 = 2 - 6 = -4, \quad \begin{vmatrix} 1 & 2 \\ 2 & -5 \end{vmatrix} = (1)(-5) - (2)(2) = -5 - 4 = -9.
\]
So
\[
\Delta = 2 \cdot 19 - 4 \cdot (-4) + 2a \cdot (-9) = 38 + 16 - 18a = 54 - 18a = 18(3 - a).
\]
For a unique solution, we need \(\Delta \neq 0\), hence \(a \neq 3\).
To determine if the system has infinitely many solutions, we require \(\Delta = 0\) (\(a = 3\)), and also the system must be consistent in its rank conditions. Substituting \(a = 3\) into the equations and analyzing the augmented matrix can lead to constraints on \(b\). One finds that if \(a = 3\) and \(b = 8\), the system has infinitely many solutions (making (1) true).
Checking the other claims shows that (2) and (3) are correct for unique solutions under those specific parameter choices. However, for (4) \(a = 3, b = 6\), it does not provide infinitely many solutions (the system fails to have infinitely many solutions with those values).
Hence, statement (4) is not correct.
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R
has infinitely many solutions, then δ + k is equal to:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).