Given Points: \( P(-1, -2, 3), \, A(-2, 1, -3), \, B(2, 4, -2), \, C(-4, 2, -1) \)
To Find: Position vector \( \overrightarrow{OP} \)
\( \overrightarrow{AB} \times \overrightarrow{AC} = \hat{i}(3 \cdot 2 - 1 \cdot 1) - \hat{j}(4 \cdot 2 - 1 \cdot -2) + \hat{k}(4 \cdot 1 - 3 \cdot -2) \)
\( \lvert \overrightarrow{AB} \times \overrightarrow{AC} \rvert = \sqrt{5^2 + (-10)^2 + 10^2} \)
\( \overrightarrow{OP} = \frac{-5 + 20 + 30}{\sqrt{25 + 100 + 100}} = \frac{45}{15} = 3 \)
Let the vectors \(\mathbf{u}_1 = \hat{i} + \hat{j} + a\hat{k}, \mathbf{u}_2 = \hat{i} + b\hat{j} + \hat{k}\), and \(\mathbf{u}_3 = c\hat{i} + \hat{j} + \hat{k}\) be coplanar. If the vectors \(\mathbf{v}_1 = (a + b)\hat{i} + c\hat{j} + c\hat{k}, \mathbf{v}_2 = a\hat{i} + (b + c)\hat{j} + a\hat{k}, \mathbf{v}_3 = b\hat{i} + b\hat{j} + (c + a)\hat{k}\) are also coplanar, then \(6(a + b + c)\) is equal to:
If the points with position vectors \(a\hat{i} +10\hat{j} +13\hat{k}, 6\hat{i} +11\hat{k} +11\hat{k},\frac{9}{2}\hat{i}+B\hat{j}−8\hat{k}\) are collinear, then (19α-6β)2 is equal to
Let $ A \in \mathbb{R} $ be a matrix of order 3x3 such that $$ \det(A) = -4 \quad \text{and} \quad A + I = \left[ \begin{array}{ccc} 1 & 1 & 1 \\2 & 0 & 1 \\4 & 1 & 2 \end{array} \right] $$ where $ I $ is the identity matrix of order 3. If $ \det( (A + I) \cdot \text{adj}(A + I)) $ is $ 2^m $, then $ m $ is equal to:
A square loop of sides \( a = 1 \, {m} \) is held normally in front of a point charge \( q = 1 \, {C} \). The flux of the electric field through the shaded region is \( \frac{5}{p} \times \frac{1}{\varepsilon_0} \, {Nm}^2/{C} \), where the value of \( p \) is: