Given Points: \( P(-1, -2, 3), \, A(-2, 1, -3), \, B(2, 4, -2), \, C(-4, 2, -1) \)
To Find: Position vector \( \overrightarrow{OP} \)
\( \overrightarrow{AB} \times \overrightarrow{AC} = \hat{i}(3 \cdot 2 - 1 \cdot 1) - \hat{j}(4 \cdot 2 - 1 \cdot -2) + \hat{k}(4 \cdot 1 - 3 \cdot -2) \)
\( \lvert \overrightarrow{AB} \times \overrightarrow{AC} \rvert = \sqrt{5^2 + (-10)^2 + 10^2} \)
\( \overrightarrow{OP} = \frac{-5 + 20 + 30}{\sqrt{25 + 100 + 100}} = \frac{45}{15} = 3 \)
Let the vectors \(\mathbf{u}_1 = \hat{i} + \hat{j} + a\hat{k}, \mathbf{u}_2 = \hat{i} + b\hat{j} + \hat{k}\), and \(\mathbf{u}_3 = c\hat{i} + \hat{j} + \hat{k}\) be coplanar. If the vectors \(\mathbf{v}_1 = (a + b)\hat{i} + c\hat{j} + c\hat{k}, \mathbf{v}_2 = a\hat{i} + (b + c)\hat{j} + a\hat{k}, \mathbf{v}_3 = b\hat{i} + b\hat{j} + (c + a)\hat{k}\) are also coplanar, then \(6(a + b + c)\) is equal to:
If the points with position vectors \(a\hat{i} +10\hat{j} +13\hat{k}, 6\hat{i} +11\hat{k} +11\hat{k},\frac{9}{2}\hat{i}+B\hat{j}−8\hat{k}\) are collinear, then (19α-6β)2 is equal to
The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.