Solution:
From \(\mathbf{d} \times \mathbf{b} = \mathbf{c} \times \mathbf{b}\), we get
\[
(\mathbf{d} - \mathbf{c}) \times \mathbf{b} = \mathbf{0} \quad \Longrightarrow \quad \mathbf{d} = \mathbf{c} + \lambda \mathbf{b}.
\]
Since \(\mathbf{d} \cdot \mathbf{a} = 24\), we substitute \(\mathbf{d} = \mathbf{c} + \lambda \mathbf{b}\) to obtain
\[
(\mathbf{c} + \lambda \mathbf{b}) \cdot \mathbf{a} = 24.
\]
Calculate \(\mathbf{a} \cdot \mathbf{c}\) and \(\mathbf{a} \cdot \mathbf{b}\):
\[
\mathbf{a} \cdot \mathbf{c} = (1)(2) + (4)(-1) + (2)(4) = 2 - 4 + 8 = 6,
\]
\[
\mathbf{a} \cdot \mathbf{b} = (1)(3) + (4)(-2) + (2)(7) = 3 - 8 + 14 = 9.
\]
Hence
\[
(\mathbf{c} + \lambda \mathbf{b}) \cdot \mathbf{a} = \mathbf{c} \cdot \mathbf{a} + \lambda (\mathbf{b} \cdot \mathbf{a}) = 6 + 9\lambda = 24 \quad \Longrightarrow \quad \lambda = 2.
\]
Therefore
\[
\mathbf{d} = \mathbf{c} + 2 \mathbf{b} = (2\hat{i} - \hat{j} + 4\hat{k}) + 2(3\hat{i} - 2\hat{j} + 7\hat{k}) = 8\hat{i} - 5\hat{j} + 18\hat{k}.
\]
Finally,
\[
|\mathbf{d}|^2 = 8^2 + (-5)^2 + 18^2 = 64 + 25 + 324 = 413.
\]
Match the LIST-I with LIST-II
LIST-I (Expressions) | LIST-II (Values) | ||
---|---|---|---|
A. | \( i^{49} \) | I. | 1 |
B. | \( i^{38} \) | II. | \(-i\) |
C. | \( i^{103} \) | III. | \(i\) |
D. | \( i^{92} \) | IV. | \(-1\) |
Choose the correct answer from the options given below:
In the given circuit the sliding contact is pulled outwards such that the electric current in the circuit changes at the rate of 8 A/s. At an instant when R is 12 Ω, the value of the current in the circuit will be A.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
For $ \alpha, \beta, \gamma \in \mathbb{R} $, if $$ \lim_{x \to 0} \frac{x^2 \sin \alpha x + (\gamma - 1)e^{x^2} - 3}{\sin 2x - \beta x} = 3, $$ then $ \beta + \gamma - \alpha $ is equal to:
The maximum speed of a boat in still water is 27 km/h. Now this boat is moving downstream in a river flowing at 9 km/h. A man in the boat throws a ball vertically upwards with speed of 10 m/s. Range of the ball as observed by an observer at rest on the river bank is _________ cm. (Take \( g = 10 \, {m/s}^2 \)).