Solution:
From \(\mathbf{d} \times \mathbf{b} = \mathbf{c} \times \mathbf{b}\), we get
\[
(\mathbf{d} - \mathbf{c}) \times \mathbf{b} = \mathbf{0} \quad \Longrightarrow \quad \mathbf{d} = \mathbf{c} + \lambda \mathbf{b}.
\]
Since \(\mathbf{d} \cdot \mathbf{a} = 24\), we substitute \(\mathbf{d} = \mathbf{c} + \lambda \mathbf{b}\) to obtain
\[
(\mathbf{c} + \lambda \mathbf{b}) \cdot \mathbf{a} = 24.
\]
Calculate \(\mathbf{a} \cdot \mathbf{c}\) and \(\mathbf{a} \cdot \mathbf{b}\):
\[
\mathbf{a} \cdot \mathbf{c} = (1)(2) + (4)(-1) + (2)(4) = 2 - 4 + 8 = 6,
\]
\[
\mathbf{a} \cdot \mathbf{b} = (1)(3) + (4)(-2) + (2)(7) = 3 - 8 + 14 = 9.
\]
Hence
\[
(\mathbf{c} + \lambda \mathbf{b}) \cdot \mathbf{a} = \mathbf{c} \cdot \mathbf{a} + \lambda (\mathbf{b} \cdot \mathbf{a}) = 6 + 9\lambda = 24 \quad \Longrightarrow \quad \lambda = 2.
\]
Therefore
\[
\mathbf{d} = \mathbf{c} + 2 \mathbf{b} = (2\hat{i} - \hat{j} + 4\hat{k}) + 2(3\hat{i} - 2\hat{j} + 7\hat{k}) = 8\hat{i} - 5\hat{j} + 18\hat{k}.
\]
Finally,
\[
|\mathbf{d}|^2 = 8^2 + (-5)^2 + 18^2 = 64 + 25 + 324 = 413.
\]
The respective values of \( |\vec{a}| \) and} \( |\vec{b}| \), if given \[ (\vec{a} - \vec{b}) \cdot (\vec{a} + \vec{b}) = 512 \quad \text{and} \quad |\vec{a}| = 3 |\vec{b}|, \] are: