If the equation of the normal to the curve \( y = \frac{x - a}{(x + b)(x - 2)} \) at the point \( (1, -3) \) is \( x - 4y = 13 \), then the value of \( a + b \) is:
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
If \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] and
and \( f(0) = \frac{5}{4} \), then the value of \[ 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) \] equals to:
\( x \) is a peptide which is hydrolyzed to 2 amino acids \( y \) and \( z \). \( y \) when reacted with HNO\(_2\) gives lactic acid. \( z \) when heated gives a cyclic structure as below:
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
Consider the following graph between Rate Constant (K) and \( \frac{1}{T} \): Based on the graph, determine the correct order of activation energies \( E_{a1}, E_{a2}, \) and \( E_{a3} \).