Given equation can be rearranged as
x(x⁶ + 3x⁴ - 13x² - 15) = 0
Clearly x = 0 is one of the roots and the other part can be observed by replacing x² = t, from which we get:
t³ + 3t² - 13t - 15 = 0
⇒ (t - 3)(t² + 6t + 5) = 0
So, t = 3, t = -1, t = -5
Now we are getting:
x² = 3, x² = -1, x² = -5
⇒ x = ±√3, x = ±i, x = ±√5i
From the given condition:
|α₁| ≥ |α₂| ≥ .... ≥ |α₆|
We can clearly say that:
|α₁| = 0 and |α₂| = √5 = |α₅| and |α₄| = √3
= |α₃| and |α₂| = 1 = |α₁|
So we can have:
α₁ = √5i, α₂ = -√5i, α₃ = √3i, α₄ = √3, α₅ = i, α₆ = -i
Hence
α₁ - α₂ - α₃ + α₄ + α₅ + α₆ = 1 - (-3) + 5 = 9
Let \( M \) be a \( 7 \times 7 \) matrix with entries in \( \mathbb{R} \) and having the characteristic polynomial \[ c_M(x) = (x - 1)^\alpha (x - 2)^\beta (x - 3)^2, \] where \( \alpha>\beta \). Let \( {rank}(M - I_7) = {rank}(M - 2I_7) = {rank}(M - 3I_7) = 5 \), where \( I_7 \) is the \( 7 \times 7 \) identity matrix.
If \( m_M(x) \) is the minimal polynomial of \( M \), then \( m_M(5) \) is equal to __________ (in integer).
In the given figure, graph of polynomial \(p(x)\) is shown. Number of zeroes of \(p(x)\) is

The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.