The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
To determine the largest \( n \in \mathbb{N} \) such that \( 3^n \) divides \( 50! \), we will use the method of finding the highest power of a prime \( p \) dividing \( n! \). The formula is:
\(\sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor\)
For \( n = 50 \) and \( p = 3 \), the expression becomes:
\(\left\lfloor \frac{50}{3} \right\rfloor + \left\lfloor \frac{50}{9} \right\rfloor + \left\lfloor \frac{50}{27} \right\rfloor + \left\lfloor \frac{50}{81} \right\rfloor + \ldots\)
Calculating each term step by step:
Since all further terms will also be zero, the sum is:
\(16 + 5 + 1 = 22\)
Thus, the largest \( n \) such that \( 3^n \) divides \( 50! \) is 22.
We are asked to find the largest natural number \( n \) such that \( 3^n \) divides \( 50! \). This is equivalent to finding the exponent of the highest power of the prime number 3 in the prime factorization of \( 50! \).
To solve this problem, we use Legendre's Formula. This formula calculates the exponent of a prime number \( p \) in the prime factorization of \( n! \). The formula is given by:
\[ E_p(n!) = \sum_{k=1}^{\infty} \left\lfloor \frac{n}{p^k} \right\rfloor = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \dots \]
where \( \lfloor x \rfloor \) represents the greatest integer function, which gives the largest integer less than or equal to \( x \).
To find the total exponent \( n \), we sum the non-zero values calculated in the steps above.
\[ n = \left\lfloor \frac{50}{3} \right\rfloor + \left\lfloor \frac{50}{9} \right\rfloor + \left\lfloor \frac{50}{27} \right\rfloor + \left\lfloor \frac{50}{81} \right\rfloor + \dots \]
\[ n = 16 + 5 + 1 + 0 = 22 \]
This result means that \( 3^{22} \) is the highest power of 3 that is a factor of \( 50! \).
Thus, the largest \( n \in \mathbb{N} \) such that \( 3^n \) divides \( 50! \) is 22.
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = 4/3 \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \frac{n_2}{2n_1} \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is cm. 
A bob of mass \(m\) is suspended at a point \(O\) by a light string of length \(l\) and left to perform vertical motion (circular) as shown in the figure. Initially, by applying horizontal velocity \(v_0\) at the point ‘A’, the string becomes slack when the bob reaches at the point ‘D’. The ratio of the kinetic energy of the bob at the points B and C is: 
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = \frac{4}{3} \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \left( \frac{n_2}{2n_1} \right) \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is …….. cm.
