Step 1: Determine the oxidation states of Fe in both complexes.
For \( K_3[Fe(OH)_6] \):
Each \( OH^- \) group contributes a charge of –1, and there are 6 such groups. The overall charge on the complex ion is –3 (to balance 3 K⁺ ions).
Let the oxidation number of Fe be \( x \). Then:
\[
x + 6(-1) = -3 \Rightarrow x = +3
\]
Hence, the oxidation state of Fe in \( K_3[Fe(OH)_6] \) is +3.
For \( K_4[Fe(OH)_6] \):
The overall charge on the complex ion is –4 (to balance 4 K⁺ ions).
Let the oxidation number of Fe be \( x \). Then:
\[
x + 6(-1) = -4 \Rightarrow x = +2
\]
Hence, the oxidation state of Fe in \( K_4[Fe(OH)_6] \) is +2.
Step 2: Determine the electronic configurations.
For Fe (atomic number 26): ground-state configuration = [Ar] 3d⁶ 4s².
- For Fe³⁺: remove 3 electrons → [Ar] 3d⁵.
- For Fe²⁺: remove 2 electrons → [Ar] 3d⁶.
Step 3: Identify the number of unpaired electrons.
- \( Fe^{3+} \): 3d⁵ → five unpaired electrons.
- \( Fe^{2+} \): 3d⁶ → four unpaired electrons.
Step 4: Calculate spin-only magnetic moments.
The formula for spin-only magnetic moment is:
\[
\mu = \sqrt{n(n+2)} \, \text{B.M.}
\]
where \( n \) is the number of unpaired electrons.
For \( K_3[Fe(OH)_6] \): \( n = 5 \)
\[
\mu = \sqrt{5(5+2)} = \sqrt{35} = 5.92 \, \text{B.M.}
\]
For \( K_4[Fe(OH)_6] \): \( n = 4 \)
\[
\mu = \sqrt{4(4+2)} = \sqrt{24} = 4.90 \, \text{B.M.}
\]
Final Answer:
\[
\boxed{K_3[Fe(OH)_6] = 5.92 \, \text{B.M.}, \quad K_4[Fe(OH)_6] = 4.90 \, \text{B.M.}}
\]