$T \propto m^x G^y a^z$
$T \propto M^x \left[ M^{-1}L^3T^{-2} \right]^y [L]^z$
$T \propto M^{x - y} L^{3y + z} T^{-2y}$
$x - y = 0 \Rightarrow x = y$
$-2y = 1 \Rightarrow y = -\frac{1}{2}$
$3y + z = 0 \Rightarrow z = -3y = \frac{3}{2}$
$\Rightarrow T \propto m^{-\frac{1}{2}} G^{-\frac{1}{2}} a^{\frac{3}{2}}$
$T \propto \frac{a^{3/2}}{\sqrt{m}}$
$T = 4 \left( \frac{2a}{a} \right)^{3/2} = 8s$
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: