$T \propto m^x G^y a^z$
$T \propto M^x \left[ M^{-1}L^3T^{-2} \right]^y [L]^z$
$T \propto M^{x - y} L^{3y + z} T^{-2y}$
$x - y = 0 \Rightarrow x = y$
$-2y = 1 \Rightarrow y = -\frac{1}{2}$
$3y + z = 0 \Rightarrow z = -3y = \frac{3}{2}$
$\Rightarrow T \propto m^{-\frac{1}{2}} G^{-\frac{1}{2}} a^{\frac{3}{2}}$
$T \propto \frac{a^{3/2}}{\sqrt{m}}$
$T = 4 \left( \frac{2a}{a} \right)^{3/2} = 8s$
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: