We are given the equation \( 2x^2 + (\cos\theta)x - 1 = 0 \), where \( \alpha_1 \) and \( \beta_1 \) are the distinct roots. ### Step 1: Use the quadratic formula The quadratic formula for the equation \( ax^2 + bx + c = 0 \) is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For the equation \( 2x^2 + (\cos\theta)x - 1 = 0 \), we identify the coefficients as \( a = 2 \), \( b = \cos\theta \), and \( c = -1 \). Substitute these values into the quadratic formula: \[ x = \frac{-\cos\theta \pm \sqrt{(\cos\theta)^2 - 4(2)(-1)}}{2(2)} \] \[ x = \frac{-\cos\theta \pm \sqrt{(\cos\theta)^2 + 8}}{4} \] ### Step 2: Roots of the equation The roots of the equation are: \[ \alpha_1 = \frac{-\cos\theta + \sqrt{(\cos\theta)^2 + 8}}{4}, \quad \beta_1 = \frac{-\cos\theta - \sqrt{(\cos\theta)^2 + 8}}{4} \] ### Step 3: Sum of the roots From Vieta's relations, the sum of the roots is: \[ \alpha_1 + \beta_1 = -\frac{b}{a} = -\frac{\cos\theta}{2} \] ### Step 4: Minimize and maximize the value of \( \alpha_1 + \beta_1 \) The minimum and maximum values of \( \cos\theta \) occur when \( \cos\theta \) takes the extreme values within its range, \( -1 \) and \( 1 \). For \( \cos\theta = -1 \), the sum of the roots is: \[ \alpha_1 + \beta_1 = \frac{1}{2} \] For \( \cos\theta = 1 \), the sum of the roots is: \[ \alpha_1 + \beta_1 = -\frac{1}{2} \] Thus, the minimum value \( m = -\frac{1}{2} \) and the maximum value \( M = \frac{1}{2} \). ### Step 5: Calculate \( 16(M + m) \) Finally, we compute: \[ M + m = \frac{1}{2} + \left( -\frac{1}{2} \right) = 0 \] Thus, \( 16(M + m) = 16(0) = 0 \). So, the correct answer is \( {0} \).
The minimum value of $ n $ for which the number of integer terms in the binomial expansion $\left(7^{\frac{1}{3}} + 11^{\frac{1}{12}}\right)^n$ is 183, is
If $ \sum_{r=0}^{10} \left( 10^{r+1} - 1 \right)$ $\,$\(\binom{10}{r} = \alpha^{11} - 1 \), then $ \alpha $ is equal to :
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: