>
Indian Institute Of Technology Joint Admission Test for MSc
List of top Questions asked in Indian Institute Of Technology Joint Admission Test for MSc
Let
\(y : (\sqrt{\frac{2}{3}}, β) β \R\)
be the solution of
(2x β y)y' + (2y β x) = 0,
y(1) = 3.
Then
IIT JAM MA - 2023
IIT JAM MA
Differential Equations
Differential Equations
For a twice continuously differentiable function π: β β β, define
\(u_g(x,y)=\frac{1}{y}\int^y_{-y}g(x+t)dt\ \ \ \text{for}(x,y)\in \R^2, \ \ \ y \gt0.\)
Which one of the following holds for all such π ?
IIT JAM MA - 2023
IIT JAM MA
Differential Equations
Differential Equations
Let
\(y_c:\R \rightarrow(0,\infin)\)
be the solution of the Bernoulliβs equation
\(\frac{dy}{dx}-y+y^3=0,\ \ \ \ \ \ \ y(0)=c \gt 0.\)
Then, for every π > 0, which one of the following is true ?
IIT JAM MA - 2023
IIT JAM MA
Differential Equations
Differential Equations
Which one of the following is TRUE for the symmetric group S
13
?
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Groups
Let
\(A=\begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 3 \\ 1 & 1 & 4 & 4 &4 \\ \end{pmatrix}\)
and B be a 5 Γ 5 real matrix such that AB is the zero matrix. Then the maximum possible rank of B is equal to ____________.
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Matrices
Let f :
\(\R β \R\)
be a bijective function such that for all x β R, f(x) =
\(\sum\limits^{\infin}_{n=1}a_nx^n\)
and
\(f^{-1}(x)=\sum\limits_{n=1}^{\infin}b_nx^n\)
, where f
-1
is the inverse function of f. If a
1
= 2 and a
2
= 4, then b
1
is equal to _________.
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Functions of One Real Variable
Let
\(a_n=\frac{1+2^{-2}+...+n^{-2}}{n}\)
for n β
\(\N\)
. Then
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Sequences and Series
Let
\(a_n=\sin(\frac{1}{n^3})\)
and
\(b_n=\sin(\frac{1}{n})\)
for n β
\(\N\)
. Then
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Sequences and Series
Let f(x, y) =
\(e^{x^2}+y^2\)
for (x, y) β
\(\R^2\)
, and a
n
be the determinant of the matrix
\(\begin{pmatrix} \frac{β^2f}{βx^2} & \frac{β^2f}{βxβy} \\ \frac{β^2f}{βyβx} & \frac{β^2f}{βy^2} \end{pmatrix}\)
evaluated at the point (cos(n),sin(n)). Then the limit
\(\lim\limits_{n \rightarrow \infin}\)
a
n
is
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Functions of Two or Three Real Variables
Let (a
n
) be a sequence of real numbers such that the series
\(\sum\limits_{n=0}^{\infin}a_n(x-2)^n\)
converges at x = β5. Then this series also converges at
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Sequences and Series
Let
\(\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ -2 & 2 & 2 \end{pmatrix}\)
and B = A
5
+ A
4
+ I
3
. Which of the following is NOT an eigenvalue of B ?
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Matrices
The system of linear equations in x
1
, x
2
, x
3
\(\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 2 & 3 & \alpha \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}=\begin{pmatrix} 3 \\ 1 \\ \beta \end{pmatrix}\)
where Ξ±, Ξ² β R, has
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Matrices
Consider the following statements :
I. There exists a linear transformation from
\(\R^3\)
to itself such that its range space and null space are the same.
II. There exists a linear transformation from
\(\R^2\)
to itself such that its range space and null space are the same.
Then
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Finite Dimensional Vector Spaces
The area of the curved surface
\(S = \left\{ (x, y, z) β \R^3 : z^2 = (x β 1)^2 + (y β 2)^2 \right\}\)
lying between the planes z = 2 and z = 3 is
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Integral Calculus
From the additive group Q to which one of the following groups does there exist a non-trivial group homomorphism ?
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Groups
Let f(x, y) = ln(1 + x
2
+ y
2
) for (x, y) β
\(\R^2\)
. Define
\(\begin{matrix} P=\frac{β^2f}{βx^2}|_{(0,0)} & Q=\frac{β^2f}{βxβy}|_{(0,0)} \\ R=\frac{β^2f}{βyβx}|_{(0,0)} & S=\frac{β^2f}{βy^2}|_{(0,0)} \end{matrix}\)
Then
IIT JAM MA - 2023
IIT JAM MA
Differential Equations
Differential Equations
Let G be a finite group. Then G is necessarily a cyclic group if the order of G is
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Groups
Let
\(a_n=\left(1+\frac{1}{n}\right)^n\)
and
\(b_n=n\cos(\frac{n!\pi}{2^{10}})\)
for n β
\(\N\)
. Then
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Sequences and Series
For each t β (0, 1), the surface P
t
in
\(\R^3\)
is defined by
\(P_t = \left\{(x, y, z) : (x^2 + y^2 )z = 1, t^2 β€ x^2 + y^2 β€ 1\right\}.\)
Let a
t
β R be the surface area of P
t
. Then
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Functions of Two or Three Real Variables
Let
\(f(x,y)=\iint\limits_{(u-x^2)+(v-y)^2 \le 1}e^{-\sqrt{(u-x)^2+(v-y)^2}}du\ dv.\)
Then
\(\lim\limits_{n \rightarrow \infin}f(n,n^2)\)
is
IIT JAM MA - 2023
IIT JAM MA
Multivariable Calculus
Integral Calculus
Let A β
\(\Z\)
with 0 β A. For r, s β
\(\Z\)
, define
rA = {ra : a β A}, rA + sA = {ra + sb : a, b β A}.
Which of the following conditions imply that A is a subgroup of the additive group
\(\Z\)
?
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Groups
Let (a
n
) and (b
n
) be sequences of real numbers such that
\(|a_n-a_{n+1}|=\frac{1}{2^n}\)
and
\(|b_n-b_{n+1}|=\frac{1}{\sqrt{n}}\)
for n β
\(\N\)
.
Then
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Sequences and Series
Consider the initial value problem
\(\frac{dy}{dx}+Ξ±y=0, \\ y(0)=1,\)
where Ξ± β
\(\R\)
. Then
IIT JAM MA - 2023
IIT JAM MA
Differential Equations
Differential Equations
Let S and T be non-empty subsets of
\(\R^2\)
, and W be a non-zero proper subspace of
\(\R^2\)
. Consider the following statements :
I. If span(S) =
\(\R^2\)
, then span(S β© W) = W.
II. span(S βͺ T) = span(S) βͺ span(T).
Then
IIT JAM MA - 2023
IIT JAM MA
Linear Algebra
Finite Dimensional Vector Spaces
Let R
1
and R
2
be the radii of convergence of the power series
\(\sum\limits_{n=1}^{\infin}(-1)^nx^{n-1}\)
and
\(\sum\limits_{n=1}^{\infin}(-1)^n\frac{x^{n+1}}{n(n+1)}\)
, respectively. Then
IIT JAM MA - 2023
IIT JAM MA
Real Analysis
Sequences and Series
Prev
1
2
3
4
5
...
8
Next