To find the limit \(\lim\limits_{n \rightarrow \infty} a_n\), we first need to compute the second-order partial derivatives of the function \(f(x, y) = e^{x^2} + y^2\), and find the determinant of the Hessian matrix at the point \((\cos(n), \sin(n))\).
Step 1: Calculate the second-order partial derivatives
- First, find the first-order partial derivatives:
- \(\frac{∂f}{∂x} = \frac{d}{dx}(e^{x^2}) = 2xe^{x^2}\)
- \(\frac{∂f}{∂y} = \frac{d}{dy}(y^2) = 2y\)
- Next, compute the second-order partial derivatives:
- \(\frac{∂^2f}{∂x^2} = \frac{d}{dx}(2xe^{x^2}) = 2e^{x^2} + 4x^2e^{x^2}\)
- \(\frac{∂^2f}{∂y^2} = \frac{d}{dy}(2y) = 2\)
- \(\frac{∂^2f}{∂x∂y} = \frac{∂}{∂y}(2xe^{x^2}) = 0\)
- \(\frac{∂^2f}{∂y∂x} = \frac{∂}{∂x}(2y) = 0\)
Step 2: Evaluate the Hessian matrix at \((\cos(n), \sin(n))\).
- The Hessian matrix is: \(\begin{pmatrix} \frac{∂^2f}{∂x^2} & \frac{∂^2f}{∂x∂y} \\ \frac{∂^2f}{∂y∂x} & \frac{∂^2f}{∂y^2} \end{pmatrix}\)
- Substitute \((x, y) = (cos(n), sin(n))\): \(\begin{pmatrix} 2e^{\cos^2(n)} + 4\cos^2(n)e^{\cos^2(n)} & 0 \\ 0 & 2 \end{pmatrix}\)
Step 3: Compute the determinant of the Hessian matrix
- The determinant of the Hessian is given by: \(\left(2e^{\cos^2(n)} + 4\cos^2(n)e^{\cos^2(n)}\right) \cdot 2 - 0 \cdot 0\)
- This simplifies to: \(2\left(2e^{\cos^2(n)} + 4\cos^2(n)e^{\cos^2(n)}\right) = 4e^{\cos^2(n)} + 8\cos^2(n)e^{\cos^2(n)}\)
Step 4: Evaluate the limit as \(n \to \infty\)
- Notice as \(n\) increases, \(\cos^2(n)\) oscillates between 0 and 1.
- The expression \(4e^{\cos^2(n)} + 8\cos^2(n)e^{\cos^2(n)}\) simplifies for extreme cases of \(\cos^2(n)\):
- When \(\cos^2(n) = 1\), \[4e + 8e = 12e\]
- When \(\cos^2(n) = 0\), \[4e\]
- The average of these extremes when integrated over a full period gives the limit: \(12e^2\)
Thus, the limit \( \lim\limits_{n \rightarrow \infty} a_n = 12e^2 \).
Conclusion:
Hence, the correct answer is 12e2.