We are given the differential equation:
\(\frac{dy}{dx} = 1 + y\sec x\)
We need to solve it with the initial condition \(y(0) = 0\) and find \(y\left(\frac{\pi}{6}\right)\).
Step 1: Rearrange the equation into a linear form: \(\frac{dy}{dx} - y\sec x = 1\)
Step 2: This is a linear differential equation of the form \(\frac{dy}{dx} + P(x)y = Q(x)\), where \(P(x) = -\sec x\) and \(Q(x) = 1\).
Step 3: Find the integrating factor (IF):
\[ IF = e^{\int P(x) \, dx} = e^{-\int \sec x \, dx} = e^{-\log|\sec x + \tan x|} \]
Step 4: Simplify the integrating factor:
\[ IF = \frac{1}{|\sec x + \tan x|} \] Since \(x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\), \(\sec x + \tan x\) is always positive. Thus, \[ IF = \frac{1}{\sec x + \tan x} \]
Step 5: Solve the differential equation using the integrating factor:
Multiply the entire equation by the integrating factor: \[ \frac{1}{\sec x + \tan x} \frac{dy}{dx} - \frac{1}{\sec x + \tan x}y\sec x = \frac{1}{\sec x + \tan x} \]
The left-hand side forms the derivative of the product: \[ \frac{d}{dx}\left(\frac{y}{\sec x + \tan x}\right) = \frac{1}{\sec x + \tan x} \]
Step 6: Integrate both sides:
\[ \int \frac{d}{dx}\left(\frac{y}{\sec x + \tan x}\right) \, dx = \int \frac{1}{\sec x + \tan x} \, dx \]
This simplifies to:
\[ \frac{y}{\sec x + \tan x} = \log|\sec x + \tan x| + C \]
Step 7: Apply the initial condition \(y(0) = 0\):
When \(x = 0\), \(\sec 0 = 1\) and \(\tan 0 = 0\), so \(|\sec x + \tan x| = 1\):
\[ \frac{0}{1} = \log(1) + C \Rightarrow C = 0 \]
Step 8: Substitute back to find the specific solution:
\[ \frac{y}{\sec x + \tan x} = \log|\sec x + \tan x| \]
Thus,
\[ y = (\sec x + \tan x) \log|\sec x + \tan x| \]
Step 9: Evaluate at \(x = \frac{\pi}{6}\):
Compute \(\sec \frac{\pi}{6} = \frac{2}{\sqrt{3}}\) and \(\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}\).
\[ \sec x + \tan x = \frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \]
\[ y\left(\frac{\pi}{6}\right) = (\sqrt{3})\log(\sqrt{3}) = \sqrt{3}\log\left(\frac{3}{2}\right) \]
Thus, the value of \(y\left(\frac{\pi}{6}\right)\) equals \(\sqrt{3}\log(\frac{3}{2})\).
Let \( f : [1, \infty) \to [2, \infty) \) be a differentiable function. If
\( 10 \int_{1}^{x} f(t) \, dt = 5x f(x) - x^5 - 9 \) for all \( x \ge 1 \), then the value of \( f(3) \) is ______.