Let \( G \) be a group with identity element \( e \), and let \( g, h \in G \) be such that the following hold:
\[
g \neq e, \quad g^2 = e, \quad h \neq e, \quad h^2 \neq e, \quad {and} \quad ghg^{-1} = h^2.
\]
Then, the least positive integer \( n \) for which \( h^n = e \) is (in integer).