Question:

Let \(a_n=\sin(\frac{1}{n^3})\) and \(b_n=\sin(\frac{1}{n})\) for n ∈ \(\N\). Then

Updated On: Oct 1, 2024
  • both \(\sum\limits_{n=1}^{\infin}a_n\) and \(\sum\limits_{n=1}^{\infin}b_n\) are convergent
  • \(\sum\limits_{n=1}^{\infin}a_n\) is convergent \(\sum\limits_{n=1}^{\infin}b_n\) is NOT convergent
  • \(\sum\limits_{n=1}^{\infin}a_n\) is NOT convergent \(\sum\limits_{n=1}^{\infin}b_n\) is convergent
  • both \(\sum\limits_{n=1}^{\infin}a_n\) and \(\sum\limits_{n=1}^{\infin}b_n\) are NOT convergent
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The correct option is (B) : \(\sum\limits_{n=1}^{\infin}a_n\) is convergent \(\sum\limits_{n=1}^{\infin}b_n\) is NOT convergent.
Was this answer helpful?
0
0