To determine the solution nature of the given system of linear equations with the matrix form:
| \(\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 2 & 3 & \alpha \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ \beta \end{pmatrix}\) |
we will analyze the possible scenarios based on the values of \( \alpha \) and \( \beta \).
| \(\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & 1 \\ 2 & 3 & \alpha \end{pmatrix}\) |
| \(\begin{pmatrix} 1 & 1 & 1 & | & 3 \\ 0 & -1 & 1 & | & 1 \\ 2 & 3 & \alpha & | & \beta \end{pmatrix}\) |
| \(\begin{pmatrix} 1 & 1 & 1 & | & 3 \\ 0 & -1 & 1 & | & 1 \\ 0 & 1 & \alpha - 2 & | & \beta - 6 \end{pmatrix}\) |
| \(\begin{pmatrix} 1 & 1 & 1 & | & 3 \\ 0 & -1 & 1 & | & 1 \\ 0 & 0 & \alpha - 1 & | & \beta - 5 \end{pmatrix}\) |