Question:

Let \(y_c:\R \rightarrow(0,\infin)\) be the solution of the Bernoulli’s equation
\(\frac{dy}{dx}-y+y^3=0,\ \ \ \ \ \ \ y(0)=c \gt 0.\)
Then, for every 𝑐 > 0, which one of the following is true ?

Updated On: Nov 18, 2024
  • \(\lim\limits_{x\rightarrow \infin}y_c(x)=0\)
  • \(\lim\limits_{x\rightarrow \infin}y_c(x)=1\)
  • \(\lim\limits_{x\rightarrow \infin}y_c(x)=e\)
  • \(\lim\limits_{x\rightarrow \infin}y_c(x)\) does not exist
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The correct option is (B) : \(\lim\limits_{x\rightarrow \infin}y_c(x)=1\).
Was this answer helpful?
2
0