>
AP EAPCET
>
Mathematics
List of top Mathematics Questions asked in AP EAPCET
If \(\alpha, \beta\) are the roots of \(ax^2+bx+c=0\), then the quadratic equation whose roots are \( \sqrt{5}\alpha, \sqrt{5}\beta \) is
AP EAPCET - 2022
AP EAPCET
Mathematics
Algebra
If \( y^2+z^2=3yz, z^2+x^2=8zx, x^2+y^2=4xy \), then the value of \( \frac{x^2}{yz} + \frac{y^2}{zx} + \frac{z^2}{xy} \) is
AP EAPCET - 2022
AP EAPCET
Mathematics
Algebra
The English alphabets have 5 vowels and 21 consonants. How many words with two different vowels and two different consonants can be formed from the alphabet?
AP EAPCET - 2022
AP EAPCET
Mathematics
permutations and combinations
In a plane there are 37 straight lines of which 13 pass through point A and 11 pass through point B. Moreover, no three lines (apart from the lines passing through A and B) pass through same point and no two lines are parallel. What is the number of points of intersection of the straight lines?
AP EAPCET - 2022
AP EAPCET
Mathematics
permutations and combinations
The values of \(\theta\), for which \( \frac{3+2i\sin\theta}{1-2i\sin\theta} \) is real are
AP EAPCET - 2022
AP EAPCET
Mathematics
Complex numbers
If 1, \(\omega, \omega^2\) denote the cube roots of unity, then, the value of \( (1-\omega+\omega^2)^5 + (1+\omega-\omega^2)^5 \) is
AP EAPCET - 2022
AP EAPCET
Mathematics
Complex numbers
The rank of the matrix \( A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 0 & 1 \\ 4 & 1 & 4 \end{bmatrix} \) is
AP EAPCET - 2022
AP EAPCET
Mathematics
Solutions of Linear Algebraic Equations
If \( A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & -6 & 5 \\ 0 & 0 & 4 \end{bmatrix} \) then Adj A =
AP EAPCET - 2022
AP EAPCET
Mathematics
Matrices
Let z and w be two distinct non-zero complex numbers if \(|z|^2w - |w|^2z = z - w\), then
AP EAPCET - 2022
AP EAPCET
Mathematics
Complex numbers
\( \frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i \implies x+y = \)
AP EAPCET - 2022
AP EAPCET
Mathematics
Complex numbers
If f is a relation from set of positive real numbers to the set of positive real numbers defined by \(f(x) = 3x^2-2\) then f is
AP EAPCET - 2022
AP EAPCET
Mathematics
Functions
If a matrix A satisfies the equation \( A^3 - 6A^2 + 11A - 6I = 0 \), then \( A^{-1} \) can be
AP EAPCET - 2022
AP EAPCET
Mathematics
Solutions of Linear Algebraic Equations
Let \( A = \begin{bmatrix} b^2+c^2 & a^2 & a^2 \\ b^2 & c^2+a^2 & b^2 \\ c^2 & c^2 & a^2+b^2 \end{bmatrix} \). If \(a = \sin \pi/6, b = \cos \pi/4\) and \(c = \cot \pi/2\) then A is
AP EAPCET - 2022
AP EAPCET
Mathematics
Matrices
Let \(f: R \rightarrow R\) be defined by \(f(x) = 2x+3\). If \(\alpha, \beta\) are the roots of the equation \(f(x^2) - 2f(\frac{x}{2}) - 1 = 0\) then \(\alpha^2 + \beta^2 = \)
AP EAPCET - 2022
AP EAPCET
Mathematics
Functions
If $ AX = D $ represents the system of simultaneous linear equations: $$ \begin{aligned} x + y + z &= 6 \\ 5x - y + 2z &= 3 \\ 2x + y - z &= -5 \end{aligned} $$ Then compute: $ (\text{Adj } A) D $
AP EAPCET - 2022
AP EAPCET
Mathematics
Matrices
If $$ A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} $$ then find: $$ \det(A^6 + B^6) $$
AP EAPCET - 2022
AP EAPCET
Mathematics
Matrices
If $$ A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} $$ then $ AA^T $ is:
AP EAPCET - 2022
AP EAPCET
Mathematics
Matrices
Let $ f : \mathbb{R} - \left\{-\frac{1}{2}\right\} \rightarrow \mathbb{R} $ be defined by $$ f(x) = \frac{x - 2}{2x + 1} $$ If $ \alpha, \beta $ satisfy the equation $$ f(f(x)) = -x $$ then evaluate: $$ 4(\alpha^2 + \beta^2) $$
AP EAPCET - 2022
AP EAPCET
Mathematics
Functions
If $$ f(x) = \log\left(\left(\frac{2x^2 - 3}{x}\right) + \sqrt{\frac{4x^4 - 11x^2 + 9}{|x|}}\right) $$ then $ f(x) $ is:
AP EAPCET - 2022
AP EAPCET
Mathematics
Functions
The general solution of the differential equation: $$ \cos^2 x \cdot \frac{dy}{dx} + y = \tan x $$ is $$ y = \tan x - 1 + C e^{-\tan x} $$ If this solution satisfies $ y\left(\frac{\pi}{4}\right) = 1 $, then find $ C $.
AP EAPCET - 2022
AP EAPCET
Mathematics
Differential equations
Assertion (A):
The order of the differential equation of a family of circles with constant radius is two.
Reason (R):
An algebraic equation involving two arbitrary constants corresponds to the general solution of a second order differential equation.
AP EAPCET - 2022
AP EAPCET
Mathematics
Differential Equations
Solve the differential equation: $$ \frac{dy}{dx} = \cos^2(3x + y) $$
AP EAPCET - 2022
AP EAPCET
Mathematics
Differential Equations
If $ [\cdot] $ denotes the greatest integer function, then evaluate: $$ \int_{-1}^1 \left( x \cdot [1 + \sin \pi x] + 1 \right) dx $$
AP EAPCET - 2022
AP EAPCET
Mathematics
Definite Integral
Given: $$ \lim_{n \to \infty} \left[ \frac{n}{(n+1)\sqrt{2n+1}} + \frac{n}{(n+2)\sqrt{2(n+2)}} + \frac{n}{(n+3)\sqrt{3(2n+3)}} + \cdots \text{(n terms)} \right] = \int_0^1 f(x)\, dx $$ Then find $ f(x) $.
AP EAPCET - 2022
AP EAPCET
Mathematics
Definite Integral
Evaluate: $$ \int \frac{e^{\tan^{-1}x}}{1+x^2} \left[\left(\sec^{-1}(\sqrt{1+x^2})\right)^2 + \cos^{-1} \left( \frac{1 - x^2}{1 + x^2} \right)\right] dx $$
AP EAPCET - 2022
AP EAPCET
Mathematics
Integration
Prev
1
...
77
78
79
80
81
...
97
Next